【題目】如圖,動(dòng)點(diǎn)到兩定點(diǎn)構(gòu)成,且,設(shè)動(dòng)點(diǎn)的軌跡為

1)求軌跡的方程;

2)設(shè)直線軸交于點(diǎn),與軌跡相交于點(diǎn),且,求的取值范圍.

【答案】13x2-y2-3=0x>1);(2

【解析】

試題(1)首先由題意可知,顯然,當(dāng)時(shí),點(diǎn)的坐標(biāo)為,當(dāng)時(shí),,可將轉(zhuǎn)化為正切值即斜率之間的關(guān)系,從而可以得到,所滿足的關(guān)系式,即可得到軌跡方程,即,化簡(jiǎn)可得,,而點(diǎn)也在曲線,軌跡的方程為;(2)首先將直線方程與軌跡的方程聯(lián)立,消去并化簡(jiǎn)后可得:,故若設(shè),的坐標(biāo)分別為,,則問(wèn)題等價(jià)于在有兩個(gè)大于的根,,且的條件下,求的取值范圍,因此首先根據(jù)方程有兩個(gè)大于的正根,可求得的取值范圍是,再由求根公式,可將表示為關(guān)于的函數(shù)關(guān)系:,在下,可得,即的取值范圍是

試題解析:(1)設(shè)的坐標(biāo)為,顯然有,且

當(dāng)時(shí),點(diǎn)的坐標(biāo)為,

當(dāng)時(shí),,由,

,即,化簡(jiǎn)可得,,而點(diǎn)也在曲線,

綜上可知,軌跡的方程為

2)由,消去并整理,得,

由題意,方程有兩根且均在內(nèi).設(shè)f(x)x24mxm23

,解得,且,

,,設(shè)的坐標(biāo)分別為,,由及方程

,,

,得,

的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】仔細(xì)觀察數(shù)列給出部分的數(shù)字,尋找規(guī)律,在空白處填上合適的數(shù)字.

12,35,8,__________21;(28,_______1417,2023;

32,48,16_______,64;(4,,,_________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),函數(shù).

(Ⅰ)判斷函數(shù)的單調(diào)性;

(Ⅱ)若時(shí),對(duì)任意,不等式恒成立,求實(shí)數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)實(shí)數(shù),整數(shù),

(1)證明:當(dāng)時(shí), ;

(2)數(shù)列滿足, ,證明: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一個(gè)直徑為1的小圓沿著直徑為2的大圓內(nèi)壁的逆時(shí)針?lè)较驖L動(dòng),MN是小圓的一條固定直徑的兩個(gè)端點(diǎn),那么,當(dāng)小圓這樣滾過(guò)大圓內(nèi)壁的一周,點(diǎn)M,N在大圓內(nèi)所繪出的圖形大致是(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為實(shí)現(xiàn)國(guó)民經(jīng)濟(jì)新三步走的發(fā)展戰(zhàn)略目標(biāo),國(guó)家加大了扶貧攻堅(jiān)的力度.某地區(qū)在2015 年以前的年均脫貧率(脫離貧困的戶數(shù)占當(dāng)年貧困戶總數(shù)的比)為.2015年開(kāi)始,全面實(shí)施精準(zhǔn)扶貧政策后,扶貧效果明顯提高,其中2019年度實(shí)施的扶貧項(xiàng)目,各項(xiàng)目參加戶數(shù)占比(參加該項(xiàng)目戶數(shù)占 2019 年貧困戶總數(shù)的比)及該項(xiàng)目的脫貧率見(jiàn)下表:

實(shí)施項(xiàng)目

種植業(yè)

養(yǎng)殖業(yè)

工廠就業(yè)

服務(wù)業(yè)

參加用戶比

脫貧率

那么年的年脫貧率是實(shí)施精準(zhǔn)扶貧政策前的年均脫貧率的(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)a>0,0≤x<2π,若函數(shù)y=cos2x-asinx+b的最大值為0,最小值為-4,試求ab的值,并求使y取得最大值和最小值時(shí)的x值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】從集市上買(mǎi)回來(lái)的蔬菜仍存有殘留農(nóng)藥,食用時(shí)需要清洗數(shù)次,統(tǒng)計(jì)表中的表示清洗的次數(shù),表示清洗次后千克該蔬菜殘留的農(nóng)藥量(單位:微克).

x

1

2

3

4

5

y

4.5

2.2

1.4

1.3

0.6

1)在如圖的坐標(biāo)系中,描出散點(diǎn)圖,并根據(jù)散點(diǎn)圖判斷,哪一個(gè)適宜作為清洗次后千克該蔬菜殘留的農(nóng)藥量的回歸方程類型;(給出判斷即可,不必說(shuō)明理由)

2)根據(jù)判斷及下面表格中的數(shù)據(jù),建立關(guān)于的回歸方程;

表中

3

2

0.12

10

0.09

-8.7

0.9

3)對(duì)所求的回歸方程進(jìn)行殘差分析.

附:①線性回歸方程中系數(shù)計(jì)算公式分別為,

,說(shuō)明模擬效果非常好;

,,,

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】原始的蚊香出現(xiàn)在宋代.根據(jù)宋代冒蘇軾之名編寫(xiě)的《格物粗談》記載:端午時(shí),貯浮萍,陰干,加雄黃,作紙纏香,燒之,能祛蚊蟲(chóng).”如圖,為某校數(shù)學(xué)興趣小組用數(shù)學(xué)軟件制作的螺旋蚊香,畫(huà)法如下:在水平直線上取長(zhǎng)度為1的線段,做一個(gè)等邊三角形,然后以點(diǎn)為圓心,為半徑逆時(shí)針畫(huà)圓弧,交線段的延長(zhǎng)線于點(diǎn),再以點(diǎn)為圓心,為半徑逆時(shí)針畫(huà)圓弧,交線段的延長(zhǎng)線于點(diǎn),以此類推,當(dāng)?shù)玫降?/span>螺旋蚊香與直線恰有個(gè)交點(diǎn)時(shí),螺旋蚊香的總長(zhǎng)度的最小值為(

A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案