5.已知△ABC的外接圓半徑為8,且sinA:sinB:sinC=2:3:4,則△ABC的面積為$\frac{45\sqrt{15}}{4}$.

分析 sinA:sinB:sinC=2:3:4,利用正弦定理可得a:b:c=2:3:4,利用余弦定理可得cosA,sinA=$\sqrt{1-co{s}^{2}A}$.再利用正弦定理可得$\frac{a}{sinA}$=2×8,解得a,即可得出三角形面積.

解答 解:∵sinA:sinB:sinC=2:3:4,∴a:b:c=2:3:4,
cosA=$\frac{{3}^{2}+{4}^{2}-{2}^{2}}{2×3×4}$=$\frac{7}{8}$,sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{\sqrt{15}}{8}$.
∴$\frac{a}{sinA}$=2×8,解得a=16×$\frac{\sqrt{15}}{8}$=2$\sqrt{15}$.
∴b=3$\sqrt{15}$,c=4$\sqrt{15}$.
∴S=$\frac{1}{2}$bcsinA=$\frac{1}{2}×$3$\sqrt{15}$×4$\sqrt{15}$×$\frac{\sqrt{15}}{8}$=$\frac{45\sqrt{15}}{4}$.
故答案為:$\frac{45\sqrt{15}}{4}$.

點(diǎn)評(píng) 本題考查了三角形面積計(jì)算公式、正弦定理余弦定理、同角三角函數(shù)基本關(guān)系式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.直線x=3的傾斜角是( 。
A.90°B.60°C.30°D.不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若數(shù)列{an}滿足:對(duì)任意的n∈N*,只有有限個(gè)正整數(shù)m使得am<n成立,記這樣的m 的個(gè)數(shù)為(an*,若將這些數(shù)從小到大排列,則得到一個(gè)新數(shù)列{(an*},我們把它叫做 數(shù)列{an}的“星數(shù)列”.已知對(duì)于任意的n∈N*,an=n2給出下列結(jié)論:
①數(shù)列{ $\frac{{a}_{n}}{n}$}*的“星數(shù)列”的前100之和為5050;
②(a5*=2;
③數(shù)列(an*的前n2項(xiàng)和為2n2-3n+1;
④{an}的“星數(shù)列”的“星數(shù)列”的通項(xiàng)公式為((an**=n2
以上結(jié)論正確的是②④.(請(qǐng)寫出你認(rèn)為正確的所有結(jié)論的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)滿足一下兩個(gè)條件的有窮數(shù)列a1,a2,…,an為n(n=2,3,4,…,)階“夢(mèng)想數(shù)列”:
①a1+a2+a3+…+an=0;
②|a1|+|a2|+|a3|+…+|an|=1.
(Ⅰ)分別寫出一個(gè)單調(diào)遞增的3階和4階“期待數(shù)列”;
(Ⅱ)若某21階“夢(mèng)想數(shù)列”是遞增等差數(shù)列,求該數(shù)列的通項(xiàng)公式;
(Ⅲ)記n階“期待數(shù)列”的前k項(xiàng)和為Sk(k=1,2,3,…,n),試證:|Sk|≤$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知圓C的圓心為C(1,1),且經(jīng)過直線x+y=4上的點(diǎn)P,則周長(zhǎng)最小的圓C的方程是(x-1)2+(y-1)2=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知E,F(xiàn),G,H為空間四邊形ABCD的邊AB,BC,CD,DA上的中點(diǎn),且異面直線AC與BD所成的角為450,AC=6,BD=4.求四邊形EFGH的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,sinA=$\frac{5}{13}$,cosB=$\frac{3}{5}$,求sinC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.集合{1,2,3,4}的不含有2的真子集為∅,{1},{3},{4},{1,3},{1,4},{3,4},{1,3,4}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,M為線段A1B上的動(dòng)點(diǎn),則下列結(jié)論正確的有①②
①三棱錐M-DCC1的體積為定值
②DC1⊥D1M
③∠AMD1的最大值為90°
④AM+MD1的最小值為2.

查看答案和解析>>

同步練習(xí)冊(cè)答案