一矩形鐵皮的長(zhǎng)為8 cm,寬為5 cm,在四個(gè)角上截去四個(gè)相同的小正方形,制成一個(gè)無(wú)蓋的小盒子,問小正方形的邊長(zhǎng)為多少時(shí),盒子容積最大?

小正方形邊長(zhǎng)為1cm時(shí),盒子容積最大為

解析試題分析:設(shè)小正方形的邊長(zhǎng)為 cm,則盒子底面長(zhǎng)為()cm,寬為()cm,則,求導(dǎo),討論導(dǎo)數(shù)的正負(fù)得函數(shù)的增減性,根據(jù)其單調(diào)性求最值。
試題解析:解:設(shè)小正方形的邊長(zhǎng)為 cm,則盒子底面長(zhǎng)為()cm,寬為()cm,
,                     4分

,在定義域內(nèi)僅有一個(gè)極大值,
     10分
即小正方形邊長(zhǎng)為1cm時(shí),盒子容積最大為                      12分
考點(diǎn):1函數(shù)解析式;2用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若的極值點(diǎn),求的值;
(2)若的圖象在點(diǎn)處的切線方程為,
①求在區(qū)間上的最大值;
②求函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

一火車鍋爐每小時(shí)煤的消耗費(fèi)用與火車行駛速度的立方成正比,已知當(dāng)速度為20 km/h時(shí),每小時(shí)消耗的煤價(jià)值40元,其他費(fèi)用每小時(shí)需400元,火車的最高速度為100 km/h,火車以何速度行駛才能使從甲城開往乙城的總費(fèi)用最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=+ln x.
(1)當(dāng)a=時(shí),求f(x)在[1,e]上的最大值和最小值;
(2)若函數(shù)g(x)=f(x)-x在[1,e]上為增函數(shù),求正實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

求過點(diǎn)(2,0)且與曲線yx3相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

質(zhì)量為10 kg的物體按照s(t)=3t2t+4的規(guī)律做直線運(yùn)動(dòng),
求運(yùn)動(dòng)開始后4秒時(shí)物體的動(dòng)能.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)(其中為自然對(duì)數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)定義:若函數(shù)在區(qū)間上的取值范圍為,則稱區(qū)間為函數(shù)的“域同區(qū)間”.試問函數(shù)上是否存在“域同區(qū)間”?若存在,求出所有符合條件的“域同區(qū)間”;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù),以點(diǎn)為切點(diǎn)作函數(shù)圖像的切線,直線與函數(shù)圖像及切線分別相交于,記
(1)求切線的方程及數(shù)列的通項(xiàng);
(2)設(shè)數(shù)列的前項(xiàng)和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a∈R,函數(shù)f(x)=+ln x-1.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)求f(x)在區(qū)間(0,e]上的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案