已知函數(shù)(其中為自然對數(shù)的底數(shù)).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)定義:若函數(shù)在區(qū)間上的取值范圍為,則稱區(qū)間為函數(shù)的“域同區(qū)間”.試問函數(shù)在上是否存在“域同區(qū)間”?若存在,求出所有符合條件的“域同區(qū)間”;若不存在,請說明理由.
(1)單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;(2)詳見解析.
解析試題分析:(1)先求出函數(shù)的定義域與導(dǎo)數(shù),求出極值點,解有關(guān)導(dǎo)數(shù)的不等式,從而確定函數(shù)的單調(diào)增區(qū)間和減區(qū)間;(2)結(jié)合(1)中的結(jié)論可知,函數(shù)在區(qū)間上單調(diào)遞增,根據(jù)定義得到,,問題轉(zhuǎn)化為求方程在區(qū)間上的實數(shù)根,結(jié)合導(dǎo)數(shù)來討論方程在區(qū)間上的實根的個數(shù),從而確定函數(shù)在區(qū)間上是否存在“域同區(qū)間”.
試題解析:(1),定義域為,
且,
令,即,解得或;令,即,解得,
故函數(shù)的單調(diào)遞增區(qū)間為和,單調(diào)遞減區(qū)間為;
(2)由(1)知,函數(shù)在區(qū)間上是單調(diào)遞增函數(shù),
假設(shè)函數(shù)在區(qū)間上存在“域同區(qū)間”,則有,,
則方程在區(qū)間上有兩個相異實根,
構(gòu)造新函數(shù),定義域為,
則,
設(shè),則,
當(dāng)時,,則恒成立,
因此函數(shù)在區(qū)間上單調(diào)遞增,,,
故函數(shù)在區(qū)間上存在唯一零點,則有,
當(dāng)時,;當(dāng)時,,
故函數(shù)在區(qū)間上是單調(diào)遞減函數(shù),在區(qū)間上是單調(diào)遞增函數(shù),
因為,,,
所以函數(shù)在區(qū)間有且只有一個零點,
這與方程有兩個大于的實根相矛盾,所以假設(shè)不成立!
所以函數(shù)在區(qū)間
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x2-(a-2)x-alnx.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若函數(shù)f(x)有兩個零點,求滿足條件的最小正整數(shù)a的值;
(3)若方程f(x)=c有兩個不相等的實數(shù)根x1、x2,求證:f′>0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知f(x)=x+,h(x)=,設(shè)F(x)=f(x)-h(x),求F(x)的單調(diào)區(qū)間與極值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
一矩形鐵皮的長為8 cm,寬為5 cm,在四個角上截去四個相同的小正方形,制成一個無蓋的小盒子,問小正方形的邊長為多少時,盒子容積最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)
(1)當(dāng)a=2時,求函數(shù)y=f(x)的圖象在x=0處的切線方程;
(2)判斷函數(shù)f(x)的單調(diào)性;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)f(x)=x3-ax2-ax,g(x)=2x2+4x+c.
(1)試問函數(shù)f(x)能否在x=-1時取得極值?說明理由;
(2)若a=-1,當(dāng)x∈[-3,4]時,函數(shù)f(x)與g(x)的圖象有兩個公共點,求c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),.
(1)當(dāng)時,求曲線在點處的切線方程;
(2)若在區(qū)間上是減函數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
定義在R上的函數(shù)同時滿足以下條件:
①在(0,1)上是減函數(shù),在(1,+∞)上是增函數(shù);
②是偶函數(shù);
③在x=0處的切線與直線y=x+2垂直.
(1)求函數(shù)的解析式;
(2)設(shè)g(x)=,若存在實數(shù)x∈[1,e],使g(x)<,求實數(shù)m的取值范圍。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com