如圖,已知△OFQ的面積為S,且·=1.設(shè)||=c(c≥2),S=c.若以O(shè)為中心,F(xiàn)為一個焦點的橢圓經(jīng)過點Q,當||取最小值時,求橢圓的方程.
=1
以O(shè)為原點,所在直線為x軸建立平面直角坐標系.設(shè)橢圓方程為=1(a>b>0),Q(x,y).=(c,0),則=(x-c,y).∵||·y=c,∴y=.
又∵·=c(x-c)=1,∴x=c+.則||=(c≥2).
可以證明:當c≥2時,函數(shù)t=c+為增函數(shù),
∴當c=2時,||min,此時Q.將Q的坐標代入橢圓方程,得解得∴橢圓方程為=1.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓 (a>b>0)的上、下頂點分別為A、B,已知點B在直線l:上,且橢圓的離心率e =

(1)求橢圓的標準方程;
(2)設(shè)P是橢圓上異于A、B的任意一點,PQ⊥y軸,Q為垂足,M為線段PQ中點,直線AM交直線l于點C,N為線段BC的中點,求證:OM⊥MN.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓C的中點在原點,焦點在x軸上,離心率等于,它的一個頂點恰好是拋物線的焦點.

(1)求橢圓C的方程;
(2)己知點P(2,3),Q(2,-3)在橢圓上,點A、B是橢圓上不同的兩個動點,且滿足APQ=BPQ,試問直線AB的斜率是否為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,點為橢圓右焦點,圓與橢圓的一個公共點為,且直線與圓相切與點。

(1)求的值及橢圓的標準方程;
(2)設(shè)動點滿足,其中是橢圓上的點,為原點,直線的斜率之積為,求證:為定值。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓E:+=1(a>b>0),以拋物線y2=8x的焦點為頂點,且離心率為.
(1)求橢圓E的方程;
(2)若F為橢圓E的左焦點,O為坐標原點,直線l:y=kx+m與橢圓E相交于A、B兩點,與直線x=-4相交于Q點,P是橢圓E上一點且滿足=+,證明·為定值,并求出該值.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,橢圓C:=1(a>b>0)的離心率為,其左焦點到點P(2,1)的距離為.不過原點O的直線l與C相交于A,B兩點,且線段AB被直線OP平分.

(1)求橢圓C的方程;
(2)求△ABP面積取最大值時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,在平面直角坐標系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點,A,B分別是橢圓E的左、右頂點,且+5=0.
 
(1)求橢圓E的離心率; (2)已知點D(1,0)為線段OF2的中點,M為橢圓E上的動點(異于點A、B),連結(jié)MF1并延長交橢圓E于點N,連結(jié)MD、ND并分別延長交橢圓E于點P、Q,連結(jié)PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,F(xiàn)1、F2是橢圓=1(a>b>0)的左、右焦點,點M在x軸上,且,過點F2的直線與橢圓交于A、B兩點,且AM⊥x軸,·=0.

(1)求橢圓的離心率;
(2)若△ABF1的周長為,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

在平面直角坐標系中,有橢圓=1(a>b>0)的焦距為2c,以O(shè)為圓心,a為半徑的圓.過點作圓的兩切線互相垂直,則離心率e=________.

查看答案和解析>>

同步練習冊答案