分析 (1)當(dāng)a=1時,f′(x)=(x2+3x+2)ex,由此利用導(dǎo)數(shù)性質(zhì)能求出f(x)的單調(diào)遞增區(qū)間.
(2)f′(x)=[x2+(a+2)x+2a]ex,由f′(x)=0,得x=-2,或x=-a,列表討論,能求出a的值.
解答 解:(1)當(dāng)a=1時,f(x)=(x2+x+1)ex,
∴f′(x)=(x2+3x+2)ex,
由f′(x)≥0,得x≤-2,或x≥-1,
∴f(x)的增區(qū)間為(-∞,-2],[-1,+∞).
(2)f′(x)=[x2+(a+2)x+2a]ex,
由f′(x)=0,得x=-2,或x=-a,
列表討論,得:
x | (-∞,-2) | -2 | (-2,-a) | -a | (-a,+∞) |
f′(x) | + | 0 | - | 0 | + |
f(x) | ↑ | 極大值 | ↓ | 極小值 | ↑ |
點評 本題考查函數(shù)單調(diào)區(qū)間的求法,考查實數(shù)的取值范圍的求法,是中檔題,解題時要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com