定義在[-2,2]上的偶函數(shù)g(x),當(dāng)x≥0時(shí),g(x)單調(diào)遞減,若g(1-m)-g(m)<0,則實(shí)數(shù)m的取值范圍是
 
分析:由題條件知函數(shù)在[0,2]上是減函數(shù),在[-2,0]上是增函數(shù),其規(guī)律是自變量的絕對(duì)值越小,其函數(shù)值越大,由此可直接將f(1-m)<f(m)轉(zhuǎn)化成一般不等式,再結(jié)合其定義域可以解出m的取值范圍.
解答:解:因?yàn)楹瘮?shù)是偶函數(shù),∴g(1-m)=g(|1-m|),g(m)=g(|m|),
  又g(x)在x≥0上單調(diào)遞減,故函數(shù)在x≤0上是增函數(shù),
∵f(1-m)<f(m),
|1-m>|m
-2≤1-m≤2
-2≤m≤2
,得 -1≤m<
1
2

實(shí)數(shù)m的取值范圍是 -1≤m<
1
2

故答案為:-1≤m<
1
2
點(diǎn)評(píng):本題考點(diǎn)是抽象函數(shù)及其應(yīng)用,考查利用抽象函數(shù)的單調(diào)性解抽象不等式,解決此類題的關(guān)鍵是將函數(shù)的性質(zhì)進(jìn)行正確的轉(zhuǎn)化,將抽象不等式轉(zhuǎn)化為一般不等式求解.本題在求解中有一點(diǎn)易疏漏,即忘記根據(jù)定義域?yàn)閇-2,2]來(lái)限制參數(shù)的范圍.做題一定要嚴(yán)謹(jǐn),轉(zhuǎn)化要注意驗(yàn)證是否等價(jià).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在[-2,2]上的偶函數(shù)f (x)在區(qū)間[一2,0]上單調(diào)遞增.若f(2一m)<f(m),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在[-2,2]上的奇函數(shù)f(x),當(dāng)x≥0時(shí),f(x)單調(diào)遞減,若f(1-m)+f(m)<0成立,求m的取值范為
[-1,2]
[-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義在R上的奇函數(shù)f(x)有最小正周期4,且x∈(0,2)時(shí),f(x)=
3x9x+1

(1)判斷f(x)在(0,2)上的單調(diào)性,并給予證明;
(2)求f(x)在[-2,2]上的解析式;
(3)當(dāng)λ為何值時(shí),關(guān)于方程f(x)=λ在[-2,2]上有實(shí)數(shù)解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在[-2,2]上的奇函數(shù)f(x)在區(qū)間[-2,0]上單調(diào)遞減,若f(a)+f(a-1)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)定義在[-2,2]上的奇函數(shù)y=f(x)在(0,2]上的圖象如圖所示,則不等式f(x)≥0的解集是
[-2,-1]∪[0,1]
[-2,-1]∪[0,1]

查看答案和解析>>

同步練習(xí)冊(cè)答案