【題目】在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且2cosAcosC(tanAtanC﹣1)=1.
(Ⅰ)求B的大。
(Ⅱ)若 , ,求△ABC的面積.

【答案】解:(Ⅰ)由2cosAcosC(tanAtanC﹣1)=1得:2cosAcosC( ﹣1)=1, ∴2(sinAsinC﹣cosAcosC)=1,即cos(A+C)=﹣ ,
∴cosB=﹣cos(A+C)= ,
又0<B<π,
∴B=
(Ⅱ)由余弦定理得:cosB= = ,
=
又a+c= ,b=
﹣2ac﹣3=ac,即ac= ,
∴SABC= acsinB= × × =
【解析】(Ⅰ)已知等式括號(hào)中利用同角三角函數(shù)間基本關(guān)系切化弦,去括號(hào)后利用兩角和與差的余弦函數(shù)公式化簡,再由誘導(dǎo)公式變形求出cosB的值,即可確定出B的大;(Ⅱ)由cosB,b的值,利用余弦定理列出關(guān)系式,再利用完全平方公式變形,將a+b以及b的值代入求出ac的值,再由cosB的值,利用三角形面積公式即可求出三角形ABC面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若執(zhí)行如圖的程序框圖,輸出S的值為4,則判斷框中應(yīng)填入的條件是( )

A.k<14?
B.k<15?
C.k<16?
D.k<17?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD=2,動(dòng)點(diǎn)P在以點(diǎn)C為圓心且與BD相切的圓上.若= + ,則+的最大值為__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|< )的最小正周期是π,若其圖象向右平移 個(gè)單位后得到的函數(shù)為奇函數(shù),則函數(shù)y=f(x)的圖象(
A.關(guān)于點(diǎn)( ,0)對(duì)稱
B.關(guān)于直線x= 對(duì)稱
C.關(guān)于點(diǎn)( ,0)對(duì)稱
D.關(guān)于直線x= 對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】商丘市大型購物中心——萬達(dá)廣場(chǎng)將于201876日全面開業(yè),目前正處于試營業(yè)階段,某按摩椅經(jīng)銷商為調(diào)查顧客體驗(yàn)按摩椅的時(shí)間,隨機(jī)調(diào)查了50名顧客,體驗(yàn)時(shí)間(單位:分鐘)落在各個(gè)小組的頻數(shù)分布如下表:

體驗(yàn)

時(shí)間

頻數(shù)

(1)求這名顧客體驗(yàn)時(shí)間的樣本平均數(shù),中位數(shù),眾數(shù);

(2)已知體驗(yàn)時(shí)間為的顧客中有2名男性,體驗(yàn)時(shí)間為的顧客中有3名男性,為進(jìn)一步了解顧客對(duì)按摩椅的評(píng)價(jià),現(xiàn)隨機(jī)從體驗(yàn)時(shí)間為的顧客中各抽一人進(jìn)行采訪,求恰抽到一名男性的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鷹潭市龍虎山花語世界位于中國第八處世界自然遺產(chǎn),世界地質(zhì)公元、國家自然文化雙遺產(chǎn)地、國家AAAAA級(jí)旅游景區(qū)﹣﹣龍虎山主景區(qū)排衙峰下,是一座獨(dú)具現(xiàn)代園藝風(fēng)格的花卉公園,園內(nèi)匯集了3000余種花卉苗木,一年四季姹紫嫣紅花香四溢.花園景觀融合法、英、意、美、日、中六大經(jīng)典園林風(fēng)格,景觀設(shè)計(jì)唯美新穎.玫瑰花園、香草花溪、臺(tái)地花海、植物迷宮、兒童樂園等景點(diǎn)錯(cuò)落有致,交相呼應(yīng)又自成一體,是世界園藝景觀的大展示.該景區(qū)自2015年春建成試運(yùn)行以來,每天游人如織,郁金香、向日葵、虞美人等賞花旺季日入園人數(shù)最高達(dá)萬人.某學(xué)校社團(tuán)為了解進(jìn)園旅客的具體情形以及采集旅客對(duì)園區(qū)的建議,特別在2017年4月1日賞花旺季對(duì)進(jìn)園游客進(jìn)行取樣調(diào)查,從當(dāng)日12000名游客中抽取100人進(jìn)行統(tǒng)計(jì)分析,結(jié)果如下:(表一)

年齡

頻數(shù)

頻率

[0,10)

10

0.1

5

5

[10,20)

[20,30)

25

0.25

12

13

[30,40)

20

0.2

10

10

[40,50)

10

0.1

6

4

[50,60)

10

0.1

3

7

[60,70)

5

0.05

1

4

[70,80)

3

0.03

1

2

[80,90)

2

0.02

0

2

合計(jì)

100

1.00

45

55


(1)完成表格一中的空位①﹣④,并在答題卡中補(bǔ)全頻率分布直方圖,并估計(jì)2017年4月1日當(dāng)日接待游客中30歲以下人數(shù).
(2)完成表格二,并問你能否有97.5%的把握認(rèn)為在觀花游客中“年齡達(dá)到50歲以上”與“性別”相關(guān)?

50歲以上

50歲以下

合計(jì)

男生

女生

合計(jì)

P(K2k)

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(參考公式:k2= ,其中n=a+b+c+d)
(3)按分層抽樣(分50歲以上與50以下兩層)抽取被調(diào)查的100位游客中的10人作為幸運(yùn)游客免費(fèi)領(lǐng)取龍虎山內(nèi)部景區(qū)門票,再從這10人中選取2人接受電視臺(tái)采訪,設(shè)這2人中年齡在50歲以上(含)的人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校高三年級(jí)有學(xué)生500人,其中男生300人,女生200人,為了研究學(xué)生的數(shù)學(xué)成績是否與性別有關(guān),現(xiàn)采用分層抽樣的方法,從中抽取了100名學(xué)生,先統(tǒng)計(jì)了他們期中考試的數(shù)學(xué)分?jǐn)?shù),然后按性別分為男、女兩組,再將兩組學(xué)生的分?jǐn)?shù)分成5組:[100,110),[110,120),[120,130),[130,140),[140,150]分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
(1)從樣本中分?jǐn)?shù)小于110分的學(xué)生中隨機(jī)抽取2人,求兩人恰好為一男一女的概率;
(2)若規(guī)定分?jǐn)?shù)不小于130分的學(xué)生為“數(shù)學(xué)尖子生”,請(qǐng)你根據(jù)已知條件完成2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“數(shù)學(xué)尖子生與性別有關(guān)”?

P(K2≥k0

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

附:K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知是等差數(shù)列, 是等比數(shù)列,且 .

1)數(shù)列的通項(xiàng)公式;

2)設(shè),求數(shù)列項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為迎接2022年北京冬季奧運(yùn)會(huì), 某校開設(shè)了冰球選修課,12名學(xué)生被分成甲、乙兩組進(jìn)行訓(xùn)練.他們的身高(單位:cm)如下圖所示:

設(shè)兩組隊(duì)員身高平均數(shù)依次為,方差依次為,則下列關(guān)系式中完全正確的是( )

A. =, =B. <,>

C. <,=D. <,<

查看答案和解析>>

同步練習(xí)冊(cè)答案