多面體MN-ABCD的底面ABCD為矩形,其正(主)視圖和側(cè)(左)視圖如圖,其中正(主)視圖為等腰梯形,側(cè)(左)視圖為等腰三角形,則AM的長

A.             B.              C.             D.

 

【答案】

C

【解析】

試題分析:主要是考查了三視圖還原幾何體的運(yùn)用,根據(jù)題意,可知該幾何體的正視圖可知高為2,底面的邊長為4,那么MN=2,AB=4,而底面BC=2,則可知AM的長為,故可知答案為C.

考點(diǎn):三視圖

點(diǎn)評(píng):主要是考查了是三視圖的運(yùn)用,求解長度,屬于基礎(chǔ)題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•臨沂二模)多面體MN-ABCD的底面ABCD為矩形,其正(主)視圖和側(cè)(左)視圖如圖,其中正(主)視圖為等腰梯形,側(cè)(左)視圖為等腰三角形,則AM的長( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州二模)某建筑物的上半部分是多面體MN-ABCD,下半部分是長方體ABCD-A1B1C1D1(如圖1).該建筑物的正(主)視圖和側(cè)(左)視圖如圖2,其中正(主)視圖由正方形和等腰梯形組合而成,側(cè)(左)視圖由長方形和等腰三角形組合而成.
(1)求線段AM的長;
(2)證明:平面ABNM⊥平面CDMN;
(3)求該建筑物的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣州二模)某建筑物的上半部分是多面體MN-ABCD,下半部分是長方體ABCD-A1B1C1D1(如圖1).該建筑物的正(主)視圖和側(cè)(左)視圖如圖2,其中正(主)視圖由正方形和等腰梯形組合而成,側(cè)(左)視圖由長方形和等腰三角形組合而成.
(1)求直線AM與平面ABCD,所成角的正弦值;
(2)求二面角A-MN-C的余弦值;
(3)求該建筑物的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東臨沂高三5月高考模擬文科數(shù)學(xué)試卷(解析版) 題型:選擇題

多面體MN-ABCD的底面ABCD為矩形,其正(主)視圖和側(cè)(左)視圖如圖,其中正(主)視圖為等腰梯形,側(cè)(左)視圖為等腰三角形,則AM的長(      )

(A)          (B)                      (C)          (D)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案