已知平行四邊形ABCD的三個(gè)頂點(diǎn)A、B、C的坐標(biāo)分別是(-2,1)、(-1,3)、(3,4),則頂點(diǎn)D的坐標(biāo)為( 。
分析:設(shè)出D,利用向量的坐標(biāo)公式求出四邊對(duì)應(yīng)的向量,據(jù)對(duì)邊平行得到向量相等,利用向量相等的充要條件列出方程組求出D的坐標(biāo).
解答:解:設(shè)D(x,y),
AB
=(1,2),
DC
=(3-x,4-y),
又∵
AB
=
DC
,
∴3-x=1,4-y=2,
解得x=2,y=2
故選B.
點(diǎn)評(píng):本題考查向量坐標(biāo)的公式、考查向量相等的坐標(biāo)形式的充要條件.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個(gè)頂點(diǎn)為D,再以O(shè)C、OD為鄰邊作平行四邊形,它的第四個(gè)頂點(diǎn)為H.
(1)若
OA
=
a
,
OB
=
b
,
OC
=
c
,
OH
=
h
,試用
a
b
、
c
表示
h
;
(2)證明:
AH
BC

(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示|
h
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知以Rt△ABC的直角邊AB為直徑作⊙O,與斜邊AC交于點(diǎn)D,E為BC邊上的中點(diǎn),連結(jié)DE.

(1)如圖,求證:DE是⊙O的切線;

(2)連結(jié)OE、AE,當(dāng)∠CAB為何值時(shí),四邊形AOED是平行四邊形,并在此條件下求sin∠CAE的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個(gè)頂點(diǎn)為D,再以O(shè)C、OD為鄰邊作平行四邊形,它的第四個(gè)頂點(diǎn)為H.
(1)若
OA
=
a
OB
=
b
,
OC
=
c
,
OH
=
h
,試用
a
、
b
c
表示
h
;
(2)證明:
AH
BC
;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示|
h
|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年遼寧省沈陽(yáng)二中高一(下)期中數(shù)學(xué)試卷(必修4)(解析版) 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個(gè)頂點(diǎn)為D,再以O(shè)C、OD為鄰邊作平行四邊形,它的第四個(gè)頂點(diǎn)為H.
(1)若,試用表示;
(2)證明:;
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年廣東省肇慶市南豐中學(xué)高三(上)數(shù)學(xué)復(fù)習(xí)試卷C (必修4)(解析版) 題型:解答題

已知O為△ABC的外心,以線段OA、OB為鄰邊作平行四邊形,第四個(gè)頂點(diǎn)為D,再以O(shè)C、OD為鄰邊作平行四邊形,它的第四個(gè)頂點(diǎn)為H.
(1)若,試用表示;
(2)證明:
(3)若△ABC的∠A=60°,∠B=45°,外接圓的半徑為R,用R表示

查看答案和解析>>

同步練習(xí)冊(cè)答案