14.已知cos($\frac{π}{2}$+α)=$\frac{2\sqrt{2}}{3}$,|α|<$\frac{π}{2}$,則tanα等于( 。
A.-2$\sqrt{2}$B.2$\sqrt{2}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{4}$

分析 由已知利用誘導(dǎo)公式可求sinα,進(jìn)而利用同角三角函數(shù)基本關(guān)系式可求cosα,tanα的值.

解答 解:∵cos($\frac{π}{2}$+α)=-sinα=$\frac{2\sqrt{2}}{3}$,|α|<$\frac{π}{2}$,
∴sinα=-$\frac{2\sqrt{2}}{3}$,cosα=$\sqrt{1-co{s}^{2}α}$=$\frac{1}{3}$,
∴tanα=$\frac{sinα}{cosα}$=-2$\sqrt{2}$.
故選:A.

點(diǎn)評(píng) 本題主要考查了誘導(dǎo)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在復(fù)平面內(nèi),復(fù)數(shù)z對(duì)應(yīng)的點(diǎn)是Z(1,-2),則復(fù)數(shù)z的共軛復(fù)數(shù)$\overline z$=1+2i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={x|-1≤x≤2},B={y|y=x2,x∈A},則A∩B=( 。
A.[-1,0]B.[0,2]C.[2,4]D.[-1,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x<1}\\{4(x+a)(x+2a),x≥1}\end{array}\right.$,若f(x)恰有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,-2]∪(-1,-$\frac{1}{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.(x-2)3(x+1)4的展開式中x2的系數(shù)為-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.在△ABC中,AB⊥AC,AB=$\frac{1}{t}$,AC=t,P是△ABC所在平面內(nèi)一點(diǎn),若$\overrightarrow{AP}$=$\frac{4\overrightarrow{AB}}{|\overrightarrow{AB}|}+\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|}$,則△PBC面積的最小值為$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.四面體A-BCD中,AB=CD=10,AC=BD=2$\sqrt{34}$,AD=BC=2$\sqrt{41}$,則四面體A-BCD外接球的表面積為( 。
A.50πB.100πC.200πD.300π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.遞增數(shù)列{an}的前n項(xiàng)和為Sn,若(2λ+1)Sn=λan+2,則實(shí)數(shù)λ的取值范圍是$(-1,\frac{1}{2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且$\frac{{\sqrt{3}c-a}}=\frac{cosA}{cosB}$.
(Ⅰ)求sinB的值;
(Ⅱ)若a=2$\sqrt{3}$,b=2$\sqrt{6}$,求△ABC的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案