2.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+a,x<1}\\{4(x+a)(x+2a),x≥1}\end{array}\right.$,若f(x)恰有2個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是(-∞,-2]∪(-1,-$\frac{1}{2}$].

分析 對(duì)a進(jìn)行討論,判斷f(x)在(-∞,1)上的零點(diǎn)個(gè)數(shù),再判斷f(x)在[1,+∞)上的零點(diǎn)個(gè)數(shù).

解答 解:當(dāng)x<1時(shí),f(x)在(-∞,1)上單調(diào)遞增,f(x)<2+a,
當(dāng)x≥1時(shí),令f(x)=0得x=-a或x=-2a.
(1)若2+a≤0即a≤-2時(shí),f(x)在(-∞,1)上無(wú)零點(diǎn),
此時(shí),-2a>-a≥2,∴f(x)在[1,+∞)上有兩個(gè)零點(diǎn),符合題意;
(2)若2+a>0即a>-2時(shí),f(x)在(-∞,1)上有1個(gè)零點(diǎn),
∴f(x)在[1,+∞)上只有1個(gè)零點(diǎn),
①若-2<a<0,則-2a>-a,∴-a<1≤-2a,解得-1<a≤-$\frac{1}{2}$,
②若a=0,則-a=-2a=0∉[1,+∞),∴f(x)在[1,+∞)上無(wú)零點(diǎn),不符合題意;
③若a>0,則0>-a>-2a,∴f(x)在[1,+∞)上無(wú)零點(diǎn),不符合題意;
綜上,a的取值范圍是(-∞,-2]∪(-1,-$\frac{1}{2}$].
故答案為(-∞,-2]∪(-1,-$\frac{1}{2}$].

點(diǎn)評(píng) 本題考查了函數(shù)的零點(diǎn)個(gè)數(shù)與函數(shù)單調(diào)性的判斷,分類討論思想,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.不等式組$\left\{\begin{array}{l}x≥2\\ x+y≥6\\ x-2y≤0\end{array}\right.$所表示的平面區(qū)域?yàn)棣,若直線ax-y+a+1=0與Ω有公共點(diǎn),則實(shí)數(shù)a的最小值為( 。
A.$-\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)函數(shù)$f(x)=sin({x+\frac{π}{4}})+cos({x-\frac{π}{4}})$,則(  )
A.$f(x)=-f({x+\frac{π}{2}})$B.$f(x)=f({-x+\frac{π}{2}})$C.$f(x)•f({x+\frac{π}{2}})=1$D.$f(x)=-f({-x+\frac{π}{2}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.若等比數(shù)列{an}的前n項(xiàng)和${S_n}={2^{n-1}}+a$,則a3a5=( 。
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.某公司為評(píng)估兩套促銷活動(dòng)方案(方案1運(yùn)作費(fèi)用為5元/件;方案2的運(yùn)作費(fèi)用為2元/件),在某地區(qū)部分營(yíng)銷網(wǎng)點(diǎn)進(jìn)行試點(diǎn)(每個(gè)試點(diǎn)網(wǎng)點(diǎn)只采用一種促銷活動(dòng)方案),運(yùn)作一年后,對(duì)比該地區(qū)上一年度的銷售情況,制作相應(yīng)的等高條形圖如圖所示.
(1)請(qǐng)根據(jù)等高條形圖提供的信息,為該公司今年選擇一套較為有利的促銷活動(dòng)方案(不必說(shuō)明理由);
(2)已知該公司產(chǎn)品的成本為10元/件(未包括促銷活動(dòng)運(yùn)作費(fèi)用),為制定本年度該地區(qū)的產(chǎn)品銷售價(jià)格,統(tǒng)計(jì)上一年度的8組售價(jià)xi(單位:元/件,整數(shù))和銷量yi(單位:件)(i=1,2,…,8)如下表所示:
售價(jià)x3335373941434547
銷量y840800740695640580525460
①請(qǐng)根據(jù)下列數(shù)據(jù)計(jì)算相應(yīng)的相關(guān)指數(shù)R2,并根據(jù)計(jì)算結(jié)果,選擇合適的回歸模型進(jìn)行擬合;
②根據(jù)所選回歸模型,分析售價(jià)x定為多少時(shí)?利潤(rùn)z可以達(dá)到最大.
$\hat y=-1200lnx+5000$$\hat y=-27x+1700$$\hat y=-\frac{1}{3}{x^2}+1200$
${\sum_{i=1}^8{({{y_i}-{{\hat y}_i}})}^2}$49428.7411512.43175.26
${\sum_{i=1}^8{({{y_i}-\overline y})}^2}$124650
(附:相關(guān)指數(shù)${R^2}=1-\frac{{{{\sum_{i=1}^n{({{y_i}-{{\hat y}_i}})}}^2}}}{{{{\sum_{i=1}^n{({{y_i}-\overline y})}}^2}}}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且$\frac{cosB}$+$\frac{cosC}{c}$=$\frac{2\sqrt{3}sinA}{3sinC}$.
(1)求b的值;
(2)若cosB+$\sqrt{3}$sinB=2,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知cos($\frac{π}{2}$+α)=$\frac{2\sqrt{2}}{3}$,|α|<$\frac{π}{2}$,則tanα等于( 。
A.-2$\sqrt{2}$B.2$\sqrt{2}$C.-$\frac{\sqrt{2}}{4}$D.$\frac{\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)f(x)=$\frac{{2}^{x}}{{2}^{x}+1}$+ax(a∈R),若f(ln3)=3,則f(ln$\frac{1}{3}$)=( 。
A.-2B.-3C.0D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.圓(x+1)2+y2=2的圓心到直線y=2x+3的距離為( 。
A.$\frac{{\sqrt{5}}}{5}$B.$\sqrt{5}$C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案