已知與拋物線交于A、B兩點(diǎn),
(1)若|AB|="10," 求實(shí)數(shù)的值。
(2)若, 求實(shí)數(shù)的值。
(1);(2) m=" -8" 。

試題分析:由,得,設(shè),則
(1)所以,所以 6分     
(2)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012626973513.png" style="vertical-align:middle;" />,所以,即,所以m= -8    6分
點(diǎn)評(píng):本題考查弦長(zhǎng)的運(yùn)算,解題時(shí)要注意橢圓性質(zhì)的靈活運(yùn)用和弦長(zhǎng)公式的合理運(yùn)用。在求直線與圓錐曲線相交的弦長(zhǎng)時(shí)一般采用韋達(dá)定理設(shè)而不求的方法,在求解過程中一般采取步驟為:設(shè)點(diǎn)→聯(lián)立方程→消元→韋達(dá)定理→弦長(zhǎng)公式。
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左頂點(diǎn),過右焦點(diǎn)且垂直于長(zhǎng)軸的弦長(zhǎng)為
(Ⅰ)求橢圓的方程;
(Ⅱ)若過點(diǎn)的直線與橢圓交于點(diǎn),與軸交于點(diǎn),過原點(diǎn)與平行的直線與橢圓交于點(diǎn),求證:為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下列說法中,正確的有        
①若點(diǎn)是拋物線上一點(diǎn),則該點(diǎn)到拋物線的焦點(diǎn)的距離是;
②設(shè)、為雙曲線的兩個(gè)焦點(diǎn),為雙曲線上一動(dòng)點(diǎn),,則的面積為;
③設(shè)定圓上有一動(dòng)點(diǎn),圓內(nèi)一定點(diǎn),的垂直平分線與半徑的交點(diǎn)為點(diǎn),則的軌跡為一橢圓;
④設(shè)拋物線焦點(diǎn)到準(zhǔn)線的距離為,過拋物線焦點(diǎn)的直線交拋物線于A、B兩點(diǎn),則、、成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

的終邊經(jīng)過點(diǎn)A,且點(diǎn)A在拋物線的準(zhǔn)線上,則( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的上頂點(diǎn)為,左焦點(diǎn)為,直線與圓相切.過點(diǎn)的直線與橢圓交于兩點(diǎn).
(I)求橢圓的方程;
(II)當(dāng)的面積達(dá)到最大時(shí),求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線的焦點(diǎn)坐標(biāo)是(   )
A.B.(1,0)C.D.(0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的左焦點(diǎn)F為圓的圓心,且橢圓上的點(diǎn)到點(diǎn)F的距離最小值為。
(I)求橢圓方程;
(II)已知經(jīng)過點(diǎn)F的動(dòng)直線與橢圓交于不同的兩點(diǎn)A、B,點(diǎn)M(),證明:為定值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

雙曲線的漸近線為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線與圓心為D的圓交于AB兩點(diǎn),則直線ADBD的傾斜角之和為(   )
A.πB.πC.πD.π

查看答案和解析>>

同步練習(xí)冊(cè)答案