精英家教網 > 高中數學 > 題目詳情
已知f(x)=sin x-cos x,則f等于 (  ).
A.0B.C.D.1
C
f′(x)=cos x+sin x,∴f
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知函數
(1)求曲線y=f(x)在(2,f(2))處的切線方程;
(2)若g(x)=f(x)一有兩個不同的極值點.其極小值為M,試比較2M與一3的大小,并說明理由;
(3)設q>p>2,求證:當x∈(p,q)時,.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=ax+x2-xlna(a>0,a≠1).
(1)當a>1時,求證:函數f(x)在(0,+∞)上單調遞增;
(2)若函數y=|f(x)-t|-1有三個零點,求t的值;
(3)若存在x1、x2∈[-1,1],使得|f(x1)-f(x2)|≥e-1,試求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數處取得極小值.
(1)若函數的極小值是,求;
(2)若函數的極小值不小于,問:是否存在實數,使得函數上單調遞減?若存在,求出的范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數f(x)的導函數為f′(x),且滿足f(x)=2xf′(1)+lnx,則f′(1)等于(  )
A.-eB.-1C.1D.e

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知拋物線yx2+1,求過點P(0,0)的曲線的切線方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知定義域為R的奇函數f(x)的導函數為f′(x),當x≠0時,f′(x)+>0,若af,b=-2f(-2),c=ln f(ln 2),則下列關于a,bc的大小關系正確的是(  )
A.abcB.acb
C.cbaD.bac

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知定義在(上的非負可導函數f(x)滿足xf′(x),對任意正數,若滿足,則必有(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若函數f(x)=cos2,則f=________.

查看答案和解析>>

同步練習冊答案