6.當0<x<$\frac{π}{4}$時,函數(shù)y=$\frac{co{s}^{2}x}{cosxsinx-si{n}^{2}x}$的最小值是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.2D.4

分析 利用正切函數(shù)的定義域和值域求得tanx的范圍,再利用同角三角函數(shù)的基本關系化簡函數(shù)的解析式,再利用二次函數(shù)的性質(zhì)求得它的最小值.

解答 解:當0<x<$\frac{π}{4}$時,tanx∈(0,1),
函數(shù)y=$\frac{co{s}^{2}x}{cosxsinx-si{n}^{2}x}$=$\frac{1}{tanx{-tan}^{2}x}$=$\frac{1}{{-(tanx-\frac{1}{2})}^{2}+\frac{1}{4}}$,故當tanx=$\frac{1}{2}$時,函數(shù)y取得最小值為4,
故選:D.

點評 本題主要考查正切函數(shù)的定義域和值域,同角三角函數(shù)的基本關系,二次函數(shù)的性質(zhì),屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

16.極坐標方程ρ=2cosθ(ρ≥0,0≤θ≤$\frac{π}{2}$)所表示的曲線是( 。
A.直線B.一條線段C.D.半圓

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.圓x2+y2-2ax=0上有且僅有一點滿足:到定點O(0,0)與A(3,0)的距離之比為2,則實數(shù)a的取值范圍為{1,3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.動直線y=a與圓x2+y2=1及直線2x+y-4=0分別交于P、Q兩點,則|PQ|的最小值為2-$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知動圓過點(2,0),且被y軸截得的弦長為4,則該動圓圓心到直線3x-y+4=0的距離最短為( 。
A.$\frac{\sqrt{10}}{3}$B.$\frac{2\sqrt{10}}{5}$C.$\frac{11\sqrt{10}}{30}$D.$\frac{\sqrt{10}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知圓方程為x2+y2+4mx-12y+4m-2=0與直線x-y+1=0.
(1)用m去表示圓的半徑和面積;
(2)求圓面積最小時,圓的一般式方程;
(3)當圓面積最小時,判斷圓與直線的位置關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{x^2}{({x>0})\;}\\{{3^x}(x<0})\;}\end{array}}$,則f[f(-2)]=$\frac{1}{81}$..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知a,b∈R,不等式$|\begin{array}{l}{x^2}&{1}&{x}\\&{-a}&{1}\\{x}&{a}&{-1}\end{array}|$>0的解為1<x<2,求a,b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)f(x)=log2$\frac{2x-1}{2x+1}$,g(x)=log2$\frac{2x+1}{8x+12}$.
(1)求證:函數(shù)y=f(x)的圖象關于坐標原點對稱;
(2)求證:f(x+1)-2=g(x),并指出函數(shù)y=g(x)圖象對稱中心的坐標.

查看答案和解析>>

同步練習冊答案