【題目】設(shè)關(guān)于的一元二次方程

1)若是從四個(gè)數(shù)中任取的一個(gè)數(shù),是從三個(gè)數(shù)中任取的一個(gè)數(shù),求上述方程有兩個(gè)不等實(shí)根的概率.

2)若是從區(qū)間任取的一個(gè)數(shù),是從區(qū)間任取的一個(gè)數(shù),求上述方程有實(shí)根的概率.

【答案】1;(2

【解析】

試題(1)本題是一個(gè)古典概型,由分布計(jì)數(shù)原理知基本事件共12個(gè),方程有實(shí)根的充要條件為,滿足條件的事件中包含6個(gè)基本事件,由古典概型公式得到事件發(fā)生的概率,同理可得出事件發(fā)生的概率,最后利用互斥事件的加法公式即可求出結(jié)果;

2)本題是一個(gè)幾何概型,試驗(yàn)的全部約束所構(gòu)成的區(qū)域?yàn)?/span>,構(gòu)成事件的區(qū)域?yàn)?/span>,根據(jù)幾何概型公式可求得結(jié)果.

試題解析:設(shè)事件A方程有實(shí)根

當(dāng)a0b0時(shí),方程有實(shí)根的充要條件為a>b

1)由題意知本題是一個(gè)古典概型,試驗(yàn)發(fā)生包含的基本事件共12個(gè):

1,0)(11)(1,2)(20)(2,1)(22)(3,0)(31)(3,2

40)(4,1)(42

其中第一個(gè)數(shù)表示a的取值,第二個(gè)數(shù)表示b的取值.

事件A中包含9個(gè)基本事件,

事件A發(fā)生的概率為

2)由題意知本題是一個(gè)幾何概型,

試驗(yàn)的全部結(jié)束所構(gòu)成的區(qū)域?yàn)?/span>{a,b|1≤a≤4,0≤b≤2}

滿足條件的構(gòu)成事件A的區(qū)域?yàn)?/span>{ab|1≤a≤4,0≤b≤2a≥b}

所求的概率是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法中正確的有(

A.將一組數(shù)據(jù)中的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,方差不變;

B.設(shè)有一個(gè)線性回歸方程,變量增加1個(gè)單位時(shí),平均增加5個(gè)單位;

C.設(shè)具有相關(guān)關(guān)系的兩個(gè)變量,的相關(guān)系數(shù)為,則越接近于0,之間的線性相關(guān)程度越弱;

D.在一個(gè)列聯(lián)表中,由計(jì)算得的值,在的前提下,的值越大,判斷兩個(gè)變量間有關(guān)聯(lián)的把握就越大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個(gè)結(jié)論中正確的個(gè)數(shù)是

(1)對于命題使得,則都有;

(2)已知,則

(3)已知回歸直線的斜率的估計(jì)值是2,樣本點(diǎn)的中心為(4,5),則回歸直線方程為;

(4)“”是“”的充分不必要條件.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)當(dāng)為自然對數(shù)的底數(shù))時(shí),求的最小值;

2)討論函數(shù)零點(diǎn)的個(gè)數(shù);

3)若對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖如示的多面體中,平面平面,四邊形是邊長為的正方形, ,.

1)若分別是中點(diǎn),求證: ∥平面

2)求此多面體的體積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是等比數(shù)列的公比大于,其前項(xiàng)和為,是等差數(shù)列,已知,,.

1)求的通項(xiàng)公式

2)設(shè),數(shù)列的前項(xiàng)和為,求;

3)設(shè),其中,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系.

(1)求圓的極坐標(biāo)方程;

(2)設(shè)曲線的極坐標(biāo)方程為,曲線的極坐標(biāo)方程為,求三條曲線,,所圍成圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的兩個(gè)頂點(diǎn)A,B的坐標(biāo)分別為(,0),(,0),圓E是△ABC的內(nèi)切圓,在邊AC,BC,AB上的切點(diǎn)分別為P,Q,R,|CP|=2,動(dòng)點(diǎn)C的軌跡為曲線G.

1)求曲線G的方程;

2)設(shè)直線l與曲線G交于M,N兩點(diǎn),點(diǎn)D在曲線G上,是坐標(biāo)原點(diǎn),判斷四邊形OMDN的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線L)的焦點(diǎn)為F,過點(diǎn)的動(dòng)直線l與拋物線L交于AB兩點(diǎn),直線交拋物線L于另一點(diǎn)C,直線的最小值為4.

1)求橢圓C的方程;

2)若過點(diǎn)Ay軸的垂線m,則x軸上是否存在一點(diǎn),使得直線PB與直線m的交點(diǎn)恒在一條定直線上?若存在,求該點(diǎn)的坐標(biāo)及該定直線的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案