已知數(shù)列{an}中,an=
2n+1,n=2m-1
2n,n=2m
,m為正整數(shù),前n項(xiàng)和為Sn,則S9=
395
395
分析:把n=1,2,3…9分別代入可求解數(shù)列的對(duì)應(yīng)的項(xiàng),然后利用分組求和,結(jié)合等差與等比數(shù)列的求和公式即可求解
解答:解:由題意可得,s9=a1+a2+…+a9
=3+22+7+24+11+26+15+28+19
=(3+7+11+15)+(4+16+64+256)=395
故答案為:395
點(diǎn)評(píng):本題主要考查了數(shù)列的分組求和及等差數(shù)列與等比數(shù)列的求和公式的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,則
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
1+2an
,則{an}的通項(xiàng)公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求數(shù)列{
2n
an
}
的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=
1
2
,Sn
為數(shù)列的前n項(xiàng)和,且Sn
1
an
的一個(gè)等比中項(xiàng)為n(n∈N*
),則
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,2nan+1=(n+1)an,則數(shù)列{an}的通項(xiàng)公式為( 。
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步練習(xí)冊(cè)答案