設(shè)分別為橢圓:的左右頂點(diǎn),為右焦點(diǎn),在點(diǎn)處的切線(xiàn),上異于的一點(diǎn),直線(xiàn),中點(diǎn),有如下結(jié)論:①平分;②與橢圓相切;③平分;④使得的點(diǎn)不存在.其中正確結(jié)論的序號(hào)是_____________.
①②

試題分析:設(shè),則的方程為:,令.
對(duì)①,的方程為:,所以點(diǎn)M到直線(xiàn)PF的距離為即點(diǎn)M到PF到距離等于M到FB的距離,所以平分,成立;對(duì)②,直線(xiàn)PM的斜率為,將求導(dǎo)得,所以過(guò)點(diǎn)P的切線(xiàn)的斜率為(也可用求得切線(xiàn)的斜率),所以橢圓在點(diǎn)處的切線(xiàn)即為PM,②成立;對(duì)③,延長(zhǎng)與直線(xiàn)交于點(diǎn),由橢圓的光學(xué)性質(zhì)知,,于是平分,而不平分,故③不成立;

,則的斜邊中線(xiàn),,這樣的有4個(gè),故④不成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知橢圓的左、右焦點(diǎn)分別為,其上頂點(diǎn)為已知是邊長(zhǎng)為的正三角形.

(1)求橢圓的方程;
(2)過(guò)點(diǎn)任作一動(dòng)直線(xiàn)交橢圓兩點(diǎn),記.若在線(xiàn)段上取一點(diǎn),使得,當(dāng)直線(xiàn)運(yùn)動(dòng)時(shí),點(diǎn)在某一定直線(xiàn)上運(yùn)動(dòng),求出該定直線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知中心在坐標(biāo)原點(diǎn),焦點(diǎn)在軸上的橢圓過(guò)點(diǎn),且它的離心率.
 
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線(xiàn)交橢圓于兩點(diǎn),若橢圓上一點(diǎn)滿(mǎn)足,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓的由頂點(diǎn)為A,右焦點(diǎn)為F,直線(xiàn)與x軸交于點(diǎn)B且與直線(xiàn)交于點(diǎn)C,點(diǎn)O為坐標(biāo)原點(diǎn),,過(guò)點(diǎn)F的直線(xiàn)與橢圓交于不同的兩點(diǎn)M,N.

(1)求橢圓的方程;
(2)求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知橢圓)過(guò)點(diǎn),且橢圓的離心率為
(1)求橢圓的方程;
(2)若動(dòng)點(diǎn)在直線(xiàn)上,過(guò)作直線(xiàn)交橢圓兩點(diǎn),且為線(xiàn)段中點(diǎn),再過(guò)作直線(xiàn).求直線(xiàn)是否恒過(guò)定點(diǎn),如果是則求出該定點(diǎn)的坐標(biāo),不是請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若橢圓與雙曲線(xiàn)有相同的焦點(diǎn),則的值是(  )
A.B.1或C.1或D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知橢圓與圓,若在橢圓上存在點(diǎn)P,使得由點(diǎn)P所作的圓的兩條切線(xiàn)互相垂直,則橢圓的離心率的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知是橢圓,上除頂點(diǎn)外的一點(diǎn),是橢圓的左焦點(diǎn),若 則點(diǎn)到該橢圓左焦點(diǎn)的距離為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若點(diǎn)O和點(diǎn)F分別為橢圓的中心和左焦點(diǎn),點(diǎn)P為橢圓上的任意一點(diǎn),則的最大值為(   )
A.2
B.3
C.6
D.8

查看答案和解析>>

同步練習(xí)冊(cè)答案