設(shè)分別為橢圓:的左右頂點,為右焦點,在點處的切線,上異于的一點,直線,中點,有如下結(jié)論:①平分;②與橢圓相切;③平分;④使得的點不存在.其中正確結(jié)論的序號是_____________.
①②

試題分析:設(shè),則的方程為:,令.
對①,的方程為:,所以點M到直線PF的距離為即點M到PF到距離等于M到FB的距離,所以平分,成立;對②,直線PM的斜率為,將求導(dǎo)得,所以過點P的切線的斜率為(也可用求得切線的斜率),所以橢圓在點處的切線即為PM,②成立;對③,延長與直線交于點,由橢圓的光學(xué)性質(zhì)知,,于是平分,而不平分,故③不成立;

,則的斜邊中線,,這樣的有4個,故④不成立.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的左、右焦點分別為,其上頂點為已知是邊長為的正三角形.

(1)求橢圓的方程;
(2)過點任作一動直線交橢圓兩點,記.若在線段上取一點,使得,當(dāng)直線運(yùn)動時,點在某一定直線上運(yùn)動,求出該定直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知中心在坐標(biāo)原點,焦點在軸上的橢圓過點,且它的離心率.
 
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)與圓相切的直線交橢圓于兩點,若橢圓上一點滿足,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的由頂點為A,右焦點為F,直線與x軸交于點B且與直線交于點C,點O為坐標(biāo)原點,,過點F的直線與橢圓交于不同的兩點M,N.

(1)求橢圓的方程;
(2)求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓)過點,且橢圓的離心率為
(1)求橢圓的方程;
(2)若動點在直線上,過作直線交橢圓兩點,且為線段中點,再過作直線.求直線是否恒過定點,如果是則求出該定點的坐標(biāo),不是請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若橢圓與雙曲線有相同的焦點,則的值是(  )
A.B.1或C.1或D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知橢圓與圓,若在橢圓上存在點P,使得由點P所作的圓的兩條切線互相垂直,則橢圓的離心率的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是橢圓,上除頂點外的一點,是橢圓的左焦點,若 則點到該橢圓左焦點的距離為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點O和點F分別為橢圓的中心和左焦點,點P為橢圓上的任意一點,則的最大值為(   )
A.2
B.3
C.6
D.8

查看答案和解析>>

同步練習(xí)冊答案