【題目】某市2010年4月1日—4月30日對空氣污染指數(shù)的監(jiān)測數(shù)據(jù)如(主要污染物為可吸入顆粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91,77,86,83,82,82,64,79,86,85,75,71,49,45.
樣本頻率分布表:
分組 | 頻數(shù) | 頻率 |
[41,51) | 2 | |
[51,61) | 1 | |
[61,71) | 4 | |
[71,81) | 6 | |
[81,91) | 10 | |
[91,101) | ||
[101,111) | 2 |
(1) 完成頻率分布表;
(2)作出頻率分布直方圖;
(3)根據(jù)國家標(biāo)準(zhǔn),污染指數(shù)在0~50之間時(shí),空氣質(zhì)量為優(yōu):在51~100之間時(shí),為良;在101~150之間時(shí),為輕微污染;在151~200之間時(shí),為輕度污染.請你依據(jù)所給數(shù)據(jù)和上述標(biāo)準(zhǔn),對該市的空氣質(zhì)量給出一個簡短評價(jià).
【答案】(1)見解析;(2)見解析;(3)見解析
【解析】
(1)先將數(shù)據(jù)從小到大排序,然后進(jìn)行分組,找出頻數(shù),求出頻率,立出表格即可;
(2)先建立直角坐標(biāo)系,按頻率分布表求出頻率/組距,得到縱坐標(biāo),畫出直方圖即可;
(3)本題只需給出簡短的評價(jià),故可以對每種分組進(jìn)行評價(jià),答到點(diǎn)上即可.
(1)首先根據(jù)題目中的數(shù)據(jù)完成頻率分布表:作出頻率分布直方圖,頻率分布表:
分組 | 頻數(shù) | 頻率 |
[41,51) | 2 | |
[51,61) | 1 | |
[61,71) | 4 | |
[71,81) | 6 | |
[81,91) | 10 | |
[91,101) | 5 | |
[101,111) | 2 |
(2)頻率分布直方圖:
(3)答對下述兩條中的一條即可:
(。┰撌幸粋月中空氣污染指數(shù)有2天處于優(yōu)的水平,占當(dāng)月天數(shù)的;有26天處于良的水平,占當(dāng)月天數(shù)的;處于優(yōu)或良的天數(shù)共有28天,占當(dāng)月天數(shù)的.說明該市空氣質(zhì)量基本良好.
(ⅱ)輕微污染有2天,占當(dāng)月天數(shù)的.污染指數(shù)在80以上的接近輕微污染的天數(shù)有15天,加上處于輕微污染的天數(shù),共有17天,占當(dāng)月天數(shù)的,超過50%.說明該市空氣質(zhì)量有待進(jìn)一步改善.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】小趙和小王約定在早上7:00至7:15之間到某公交站搭乘公交車去上學(xué),已知在這段時(shí)間內(nèi),共有2班公交車到達(dá)該站,到站的時(shí)間分別為7:05,7:15,如果他們約定見車就搭乘,則小趙和小王恰好能搭乘同一班公交車去上學(xué)的概率為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公園要設(shè)計(jì)如圖所示的景觀窗格(其結(jié)構(gòu)可以看成矩形在四個角處對稱地截去四個全等的三角形所得,如圖二中所示多邊形),整體設(shè)計(jì)方案要求:內(nèi)部井字形的兩根水平橫軸米,兩根豎軸米,記景觀窗格的外框(如圖二實(shí)線部分,軸和邊框的粗細(xì)忽略不計(jì))總長度為米.
(1)若,且兩根橫軸之間的距離為米,求景觀窗格的外框總長度;
(2)由于預(yù)算經(jīng)費(fèi)限制,景觀窗格的外框總長度不超過米,當(dāng)景觀窗格的面積(多邊形的面積)最大時(shí),給出此景觀窗格的設(shè)計(jì)方案中的大小與的長度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校要在一條水泥路邊安裝路燈,其中燈桿的設(shè)計(jì)如圖所示,AB為地面,CD,CE為路燈燈桿,CD⊥AB,∠DCE=,在E處安裝路燈,且路燈的照明張角∠MEN=.已知CD=4m,CE=2m.
(1)當(dāng)M,D重合時(shí),求路燈在路面的照明寬度MN;
(2)求此路燈在路面上的照明寬度MN的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)y=f(x)的定義域?yàn)?/span>D,若對任意的x1∈D,總存在x2∈D,使得f(x1)f(x2)=1,則稱函數(shù)f(x)具有性質(zhì)M.下列結(jié)論:①函數(shù)y=x3﹣x具有性質(zhì)M;②函數(shù)y=3x+5x具有性質(zhì)M;③若函數(shù)y=log8(x+2),x∈[0,t]時(shí)具有性質(zhì)M,則t=510;④若y具有性質(zhì)M,則a=5.其中正確結(jié)論的序號是_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,平面,底面為正方形,且.若四棱錐的每個頂點(diǎn)都在球的球面上,則球的表面積的最小值為_____;當(dāng)四棱錐的體積取得最大值時(shí),二面角的正切值為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義域是上的連續(xù)函數(shù)圖像的兩個端點(diǎn)為、,是圖像上任意一點(diǎn),過點(diǎn)作垂直于軸的直線交線段于點(diǎn)(點(diǎn)與點(diǎn)可以重合),我們稱的最大值為該函數(shù)的“曲徑”,下列定義域是上的函數(shù)中,曲徑最小的是( )
A.B.
C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)各項(xiàng)均為正數(shù)的數(shù)列的前項(xiàng)和為,已知,且對一切都成立.
(1)當(dāng)時(shí).
①求數(shù)列的通項(xiàng)公式;
②若,求數(shù)列的前項(xiàng)的和;
(2)是否存在實(shí)數(shù),使數(shù)列是等差數(shù)列.如果存在,求出的值;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com