【題目】已知數(shù)列的前項和為,點在直線上.數(shù)列滿足

,,且其前9項和為153.

)求數(shù)列,的通項公式;

)設,數(shù)列的前項和為,求使不等式對一切都成立的最大正整數(shù)的值.

【答案】解:()由已知得,

…………1分

時,

…………3分

時,也符合上式. (沒有檢驗扣1分)

, . …………4分

是等差數(shù)列, …………5分

的前9項和為153,可得

,又,

的公差

,得,

, . …………7分

, …………9分

…………10分

增大, 減小 , 增大,

是遞增數(shù)列.

. 即的最小值為 …………12分

要使得對一切都成立,只要,

,則. …………14分

【解析】本試題主要是考查了數(shù)列的通項公式的求解和求和的運用。

(1))由已知得,利用前n項和與通項公式的關(guān)系得到通項公式的結(jié)論。

(2)因為,利用裂項求和得到結(jié)論。,并證明不等式。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】2015年一交警統(tǒng)計了某路段過往車輛的車速大小與發(fā)生的交通事故次數(shù),得到如下表所示的數(shù)據(jù):

(1)請畫出上表數(shù)據(jù)的散點圖;

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程;

(3)試根據(jù)(2)求出的線性回歸方程,預測在2016年該路段路況及相關(guān)安全設施等不變的情況下,車速達到110時,可能發(fā)生的交通事故次數(shù).

(附:,其中為樣本平均值)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知動點P(x,y)(其中y )到x軸的距離比它到點F(0,1)的距離少1.
(1)求動點P的軌跡方程;
(2)若直線l:x-y+1=0與動點P的軌跡交于A、B兩點,求△OAB的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點 為坐標原點, 是橢圓 上的兩個動點,滿足直線 與直線 關(guān)于直線 對稱.
(1)證明直線 的斜率為定值,并求出這個定值;
(2)求 的面積最大時直線 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等差數(shù)列 中, ,其前 項和為 ,等比數(shù)列 的各項均為正數(shù), ,公比為 ,且
(Ⅰ)求
(Ⅱ)設數(shù)列 滿足 ,求 的前 項和

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義表示不超過的最大整數(shù)為,記,二次函數(shù)與函數(shù)上有兩個不同的交點,則的取值范圍是( )

A. B. C. D. 以上均不正確

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列各個說法正確的是( )

A. 終邊相同的角都相等 B. 鈍角是第二象限的角

C. 第一象限的角是銳角 D. 第四象限的角是負角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓 的圓心在直線 上,且圓 經(jīng)過點 .
(1)求圓的標準方程;
(2)直線 過點 且與圓 相交,所得弦長為4,求直線 的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如下圖,在三棱錐 中, , , 的中點.

(1)求證:
(2)設平面 平面 , , ,求二面角 的正弦值.

查看答案和解析>>

同步練習冊答案