已知函數(shù),

(1)若的極大值為,求實數(shù)的值;

(2)若對任意,都有恒成立,求實數(shù)的取值范圍;

(3)若函數(shù)f(x)滿足:在定義域內(nèi)存在實數(shù)x0,使f(x0+k)= f(x0)+ f(k)(k為常數(shù)),則稱“f(x)關(guān)于k可線性分解”. 設(shè),若關(guān)于實數(shù)a 可線性分解,求取值范圍.

 

(1);(2);(3).

【解析】

試題分析:本題主要考查導(dǎo)數(shù)的運算、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的極值和最值等基礎(chǔ)知識,考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計算能力.第一問,利用導(dǎo)數(shù)求出極值,令極值為,解方程得b的值,先對求導(dǎo),利用“為遞增函數(shù),為遞減函數(shù)”判斷函數(shù)單調(diào)性,利用單調(diào)性判斷極大值為;第二問,將“對任意,都有恒成立”轉(zhuǎn)化為“”,令,利用導(dǎo)數(shù)求的最小值;第三問,先利用已知得到的解析式,代入到已知的f(x0+k)= f(x0)+ f(k)中,得到方程,根據(jù)函數(shù)定義域,得.

(1)由,得,

,得. 2分

當(dāng)變化時,的變化如下表:

-

+

-

極小值

極大值

 

所以的極大值為=,

. 4分

(2)由,得

,且等號不能同時取,

,即

恒成立,即 6分

,求導(dǎo)得,,

當(dāng)時,,從而,

上為增函數(shù),

,

. 9分

(3)證明:

由已知,存在,使關(guān)于實數(shù)a 可線性分解,則,

即: 10分

, 12分

因為 所以 14分

考點:導(dǎo)數(shù)的運算、利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性、利用導(dǎo)數(shù)求函數(shù)的極值和最值.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省南通市高三年級第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

袋中有2個紅球,2個藍球,1個白球,從中一次取出2個球,則取出的球顏色相同的概率為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年江蘇省南京市高三年級第三次模擬考試數(shù)學(xué)試卷(解析版) 題型:填空題

已知m,n是不重合的兩條直線,α,β是不重合的兩個平面.下列命題:

①若α⊥β,m⊥α,則m∥β; ②若m⊥α,m⊥β,則α∥β;

③若m∥α,m⊥n,則n⊥α; ④若m∥α,mβ,則α∥β.

其中所有真命題的序號是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省韶關(guān)市高三4月高考模擬(二模)理科數(shù)學(xué)試卷(解析版) 題型:填空題

拋物線處的切線與軸及該拋物線所圍成的圖形面積為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省韶關(guān)市高三4月高考模擬(二模)理科數(shù)學(xué)試卷(解析版) 題型:選擇題

執(zhí)行如圖所示的程序框圖,若輸出的結(jié)果是,則判斷框內(nèi)的條件( 。

A.? B.? C.? D.?

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省韶關(guān)市高三4月高考模擬(二模)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求的值;

(2)當(dāng)時,求函數(shù)的值域.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省韶關(guān)市高三4月高考模擬(二模)文科數(shù)學(xué)試卷(解析版) 題型:選擇題

給出如下四個判斷:

;

③設(shè)是實數(shù),的充要條件 ;

④命題“若”的逆否命題是若,則.

其中正確的判斷個數(shù)是:

A.1 B.2 C.3 D.4

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省肇慶市高三3月第一次模擬理科數(shù)學(xué)試卷(解析版) 題型:填空題

已知集合A={4},B={1,2},C={1,3,5},從這三個集合中各取一個元素構(gòu)成空間直角坐標(biāo)系中的點的坐標(biāo),則確定的不同點的個數(shù)為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年廣東省湛江市高三高考模擬測試二理科數(shù)學(xué)試卷(解析版) 題型:填空題

極坐標(biāo)系中,圓的圓心到直線的距離是__________.

 

查看答案和解析>>

同步練習(xí)冊答案