【題目】已知函數(shù).

(1)當時,解關于的不等式

(2)若關于的不等式的解集是,求實數(shù)、的值.

【答案】1;2, .

【解析】試題分析:(1) , ,化為,計算得出即可;(2)利用一元二次不等式的解集與相應的一元二次方程的實數(shù)根的關系即可得出.

試題解析:1)由已知有:

,解得: .所以不等式的解集為:

2)由關于的不等式的解集是可知:

,3是關于的方程的兩個根,則有

解得: ,

點晴:本題考查的是二次函數(shù),二次方程,二次不等式三個二次之間的關系.解決本題的關鍵是弄清楚函數(shù)的零點,方程的根,不等式解集的端點之間的對應關系,一方面結合韋達定理可求出各系數(shù);另一方面結合二次系數(shù)的正負確定函數(shù)的開口方向,不等式的解集取中間還是兩邊.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知命題:,使等式成立是真命題.

1求實數(shù)的取值集合;

2設不等式的解集為,若的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解某年級同學每天參加體育鍛煉的時間,比較恰當?shù)厥占瘮?shù)據(jù)的方法是(

A.查閱資料B.問卷調查C.做試驗D.以上均不對

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點,直線.設圓的半徑為1,圓心在上.

1)若圓心也在直線上,過點作圓的切線,求切線的方程;

2)若圓上存在點,使,求圓心的橫坐標的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知過原點的動直線與圓 交于兩點.

(1)若,求直線的方程;

(2)軸上是否存在定點,使得當變動時,總有直線的斜率之和為0?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列中, .

(1)求證:數(shù)列是等比數(shù)列;

(2)若是數(shù)列的前項和,求滿足的所有正整數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 ,函數(shù),已知的圖像的一個對稱中心與它相鄰的一條對稱軸之間的距離為1,且經過點

(Ⅰ)求函數(shù)的解析式

(Ⅱ)先將函數(shù)圖像上各點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,再向右平移 個單位長度,向下平移3個單位長度,得到函數(shù)的圖像,若函數(shù)的圖像關于原點對稱,求實數(shù)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓C 的圓心為C, ,

(Ⅰ)在中,求邊上的高CD所在的直線方程;

(Ⅱ)求與圓C相切且在兩坐標軸上的截距相等的直線方程

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線C的頂點在x軸上,兩頂點間的距離是8,離心率

1)求雙曲線C的標準方程;

2)過點P3,0)且斜率為k的直線與雙曲線C有且僅有一個公共點,求k的值

查看答案和解析>>

同步練習冊答案