精英家教網 > 高中數學 > 題目詳情
13.若一個長方體水槽的長、寬、高分別為3$\sqrt{3}$、1、2$\sqrt{2}$,則它的外接球的表面積為36π.

分析 長方體的對角線的長度,就是外接球的直徑,求出直徑即可求出表面積.

解答 解:長方體的對角線的長度,就是外接球的直徑,所以2r=$\sqrt{27+1+8}$=6,
所以這個球的表面積:4πr2=36π.
故答案為:36π.

點評 本題是基礎題,考查長方體的外接球的應用,球的表面積的求法,考查計算能力.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:填空題

3.已知直線l:mx+y+$\sqrt{3}$=0.與圓(x+1)2+y2=2相交,弦長為2,則m=$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

4.如圖是某幾何體的三視圖,則該幾何體的表面積為63.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知函數f(x)=$\frac{1}{2}{x^2}$-alnx(a∈R).
(1)若函數f(x)在(0,+∞)為增函數,求實數a的取值范圍;
(2)討論方程f(x)=0解的個數,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

8.在四棱錐P-ABCD中,底面ABCD是一直角梯形,PA⊥底面ABCD,∠BAD=90°,AP⊥BC,AB=BC=1,AD=AP=2,E是PD的中點.
(1)求異面直線AE與CD所成角的大小;
(2)求直線BP與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.有下面四個判斷:①命題“設a、b∈R,若a+b≠6,則a≠3或b≠3”是一個假命題;②若“p或q”為真命題,則p、q均為真命題;③在△ABC中,“A>30o”是“sinA>$\frac{1}{2}$”的充分不必要條件;④設向量$\overrightarrow{a}$=(sin2θ,cosθ),$\overrightarrow$=(cosθ,1),則“$\overrightarrow{a}$∥$\overrightarrow$”是“tanθ=$\frac{1}{2}$”成立的必要不充分條件.其中所有錯誤的判斷有①②③.(填序號)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

5.已知曲線y=Asinωx+a(A>0,ω>0)在區(qū)間$[0,\frac{2π}{ω}]$上截直線y=2及y=-1所得的弦長相等且不為0,則a的值是( 。
A.$\frac{1}{2}$B.1C.$\frac{2}{3}$D.2

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,$\overrightarrow{a}$與$\overrightarrow$的夾角為30°,求|$\overrightarrow{a}$+$\overrightarrow$|,|$\overrightarrow{a}$-$\overrightarrow$|.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.計算:求$\underset{lim}{x→0}$$\frac{({∫}_{0}^{x}{e}^{{t}^{2}}dt)^{2}}{{∫}_{0}^{x}t{e}^{2{t}^{2}}dt}$.

查看答案和解析>>

同步練習冊答案