中心在原點(diǎn),焦點(diǎn)在坐標(biāo)為(0,±5)的橢圓被直線(xiàn)3xy-2=0截得的弦的

中點(diǎn)的橫坐標(biāo)為,則橢圓方程為(   )

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C中心在原點(diǎn)、焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線(xiàn)l:y=kx+m(k≠0)與橢圓交于不同的兩點(diǎn)M、N(M、N不是左、右頂點(diǎn)),且以MN為直徑的圓經(jīng)過(guò)橢圓的右頂點(diǎn)A.求證:直線(xiàn)l過(guò)定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓過(guò)M(1,
4
2
3
),N(-
3
2
2
2
)兩點(diǎn).
(1)求橢圓的方程;
(2)在橢圓上是否存在點(diǎn)P(x,y)到定點(diǎn)A(a,0)(其中0<a<3)的距離的最小值為1,若存在,求出a的值及點(diǎn)P的坐標(biāo);若不存在,請(qǐng)給予證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上的橢圓Ω,它的離心率為
1
2
,一個(gè)焦點(diǎn)和拋物線(xiàn)y2=-4x的焦點(diǎn)重合,過(guò)直線(xiàn)l:x=4上一點(diǎn)M引橢圓Ω的兩條切線(xiàn),切點(diǎn)分別是A,B.
(Ⅰ)求橢圓Ω的方程;
(Ⅱ)若在橢圓
x2
a2
+
y2
b2
=1(a>b>0)
上的點(diǎn)(x0,y0)處的橢圓的切線(xiàn)方程是
x0x
a2
+
y0y
b2
=1
.求證:直線(xiàn)AB恒過(guò)定點(diǎn)C;并出求定點(diǎn)C的坐標(biāo).
(Ⅲ)是否存在實(shí)數(shù)λ,使得|AC|+|BC|=λ|AC|•|BC|恒成立?(點(diǎn)C為直線(xiàn)AB恒過(guò)的定點(diǎn))若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

中心在原點(diǎn),焦點(diǎn)在x軸上的橢圓C的離心率為
2
2
,且經(jīng)過(guò)點(diǎn)P(1,
2
2
)

(1)求C的標(biāo)準(zhǔn)方程;
(2)直線(xiàn)l與C交于A、B兩點(diǎn),M為AB中點(diǎn),且AB=2MP.請(qǐng)問(wèn)直線(xiàn)l是否經(jīng)過(guò)某個(gè)定點(diǎn),如果經(jīng)過(guò)定點(diǎn),求出點(diǎn)的坐標(biāo);如果不過(guò)定點(diǎn),請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

中心在原點(diǎn),焦點(diǎn)在x軸上,離心率e=
2
2
的橢圓的短軸上兩端點(diǎn)分別為A、B.M是橢圓上異于A、B的一點(diǎn),直線(xiàn)AM、BM與x軸分別相交于P、Q兩點(diǎn),O是坐標(biāo)原點(diǎn),若
.
OP
.
OQ
=2
,求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案