若點(diǎn)
在橢圓
上,
、
分別是該橢圓的兩焦點(diǎn),且
,則
的面積是( )
A. 1 | B. 2 | C. | D. |
本題考查橢圓定義,直角三角形性質(zhì)及面積計(jì)算.
根據(jù)橢圓定義得:
又因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140823/20140823191823309647.png" style="vertical-align:middle;" />所以
由(1)和(2)得:
,所以
則
的面積是
故選A
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)已知橢圓
C的中心在坐標(biāo)原點(diǎn),離心率
,且其中一個(gè)焦點(diǎn)與拋物線
的焦點(diǎn)重合.(Ⅰ)求橢圓
C的方程;(Ⅱ)過點(diǎn)
的動(dòng)直線
l交橢圓
C于
A、B兩點(diǎn),試問:在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)
T,使得無論
l如何轉(zhuǎn)動(dòng),以
AB為直徑的圓恒過點(diǎn)
T,若存在,求出點(diǎn)
T的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)已知橢圓以坐標(biāo)原點(diǎn)為中心,坐標(biāo)軸為對(duì)稱軸,且該橢圓以拋物線
的焦點(diǎn)
為其一個(gè)焦點(diǎn),以雙曲線
的焦點(diǎn)
為頂點(diǎn)。
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)已知點(diǎn)
,且
分別為橢圓的上頂點(diǎn)和右頂點(diǎn),點(diǎn)
是線段
上的動(dòng)點(diǎn),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)
P是橢圓
+
=1上一點(diǎn),
F1、
F2是橢圓的焦點(diǎn),若|
PF1|等于4,則|
PF2|等于( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
橢圓短軸是2,長(zhǎng)軸是短軸的2倍,則橢圓中心到其準(zhǔn)線的距離為
A
B
C
D
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓方程是
,則焦距為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)F
1是橢圓
(a>b>0)的一個(gè)焦點(diǎn),PQ是經(jīng)過另一個(gè)焦點(diǎn)F
2的弦,則△PF
1Q的周長(zhǎng)是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本大題共12分)
過點(diǎn)P(1,0
)作直線交橢圓
于A,B兩點(diǎn),若
,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知焦點(diǎn)在
軸上的橢圓的離心率為
,它的長(zhǎng)軸長(zhǎng)等于圓
的半徑,則橢圓的標(biāo)準(zhǔn)方程是
查看答案和解析>>