(本小題滿分14分)已知橢圓以坐標原點為中心,坐標軸為對稱軸,且該橢圓以拋物線
的焦點
為其一個焦點,以雙曲線
的焦點
為頂點。
(1)求橢圓的標準方程;
(2)已知點
,且
分別為橢圓的上頂點和右頂點,點
是線段
上的動點,求
的取值范圍。
解:(1)拋物線
的焦點
為
,雙曲線
的焦點
為
…2分
∴可設(shè)橢圓的標準方程為
,由已知有
,且
,
……3分
∴
,∴橢圓的標準方程為
!5分
(2)設(shè)
,線段
方程為
,即
…………7分
點
是線段
上,∴
∵
,∴
,………10分
將
代入得
………………………12分
∵
,∴
的最大值為24,
的最小值為
。
∴
的取值范圍是
。……………………………………………14分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
為坐標原點,
為橢圓
:
在
軸正半軸上的焦點,過
且斜率為
的直線
與
交與
、
兩點,點
滿足
.
(1)證明:點
在
上;
(2)設(shè)點
關(guān)于點
的對稱點為
,證明:
、
、
、
四點在同一圓上.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
(
)的一個焦點坐標為
,且長軸長是短軸長的
倍.
(1)求橢圓
的方程;
(2)設(shè)
為坐標原點,橢圓
與直線
相交于兩個不同的點
,線段
的中點為
,若直線
的斜率為
,求△
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知橢圓
x2+(
m+3)
y2=
m(
m>0)的離心率
e=
,求
m的值及橢圓的長軸和短軸的長及頂點坐標.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若點
在橢圓
上,
、
分別是該橢圓的兩焦點,且
,則
的面積是( )
A. 1 | B. 2 | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
橢圓
經(jīng)過點
,對稱軸為坐標軸,焦點
在
軸上,離心率
,
求橢圓
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知橢圓
+
=1(a>b>0)的左焦點為F,右頂點為A,點B在橢圓上,且BF⊥x軸,直線AB交y軸于點P.若
=2
,則橢圓的離心率是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分14分)
已知:橢圓
的左右焦點為
;直線
經(jīng)過
交橢圓于
兩點.
(1)求證:
的周長為定值.
(2)求
的面積的最大值?
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
橢圓
的左、右焦點分別是F1,F(xiàn)2,過F2作傾斜角為
的直線與橢圓的一個交點為M,若MF1垂直于x軸,則橢圓的離心率為______
查看答案和解析>>