【題目】函數(shù) 的最小正周期為,若其圖像向左平移個(gè)單位后得到的函數(shù)為偶函數(shù),則函數(shù)的圖像( )
A. 關(guān)于點(diǎn)對(duì)稱 B. 關(guān)于點(diǎn)對(duì)稱 C. 關(guān)于直線對(duì)稱 D. 關(guān)于直線對(duì)稱
【答案】B
【解析】
利用正弦函數(shù)的周期性、函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律、誘導(dǎo)公式,求得f(x)的解析式,再利用正弦函數(shù)的圖象的對(duì)稱性,得出結(jié)論.
∵函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|)的最小正周期為π,∴π,∴ω=2.把其圖象向左平移個(gè)單位后得到函數(shù)sin(2xφ)的圖象,因?yàn)榈玫降暮瘮?shù)為偶函數(shù),∴φ=kπ,k∈Z,∴φ,∴f(x)=sin(2x).
由于當(dāng)x時(shí),函數(shù)f(x)=0,故A不滿足條件,而B滿足條件;
令x,求得函數(shù)f(x)=sin,故A、C不滿足條件,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表為年至年某百貨零售企業(yè)的線下銷售額(單位:萬元),其中年份代碼年份.
年份代碼 | ||||
線下銷售額 |
(1)已知與具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程,并預(yù)測年該百貨零售企業(yè)的線下銷售額;
(2)隨著網(wǎng)絡(luò)購物的飛速發(fā)展,有不少顧客對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長表示懷疑,某調(diào)查平臺(tái)為了解顧客對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長的看法,隨機(jī)調(diào)查了位男顧客、位女顧客(每位顧客從“持樂觀態(tài)度”和“持不樂觀態(tài)度”中任選一種),其中對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長持樂觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯(cuò)誤的概率不超過的前提下認(rèn)為對(duì)該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關(guān)?
參考公式及數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓 的左、右焦點(diǎn)分別為,,短軸的兩端點(diǎn)分別為,,線段,的中點(diǎn)分別為,,且四邊形是面積為8的矩形.
(Ⅰ)求橢圓的方程;
(Ⅱ)過作直線交橢圓于,兩點(diǎn),若,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),則以下結(jié)論正確的是( )
A.函數(shù)的單調(diào)減區(qū)間是
B.函數(shù)有且只有1個(gè)零點(diǎn)
C.存在正實(shí)數(shù),使得成立
D.對(duì)任意兩個(gè)正實(shí)數(shù),,且,若則
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐S-ABC中,已知SC⊥平面ABC,AB=BC=CA,SC=2,D、E分別為AB、BC的中點(diǎn).若點(diǎn)P在SE上移動(dòng),求△PCD面積的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】算籌是在珠算發(fā)明以前我國獨(dú)創(chuàng)并且有效的計(jì)算工具,為我國古代數(shù)學(xué)的發(fā)展做出了很大貢獻(xiàn).在算籌計(jì)數(shù)法中,以“縱式”和“橫式”兩種方式來表示數(shù)字,如圖:
表示多位數(shù)時(shí),個(gè)位用縱式,十位用橫式,百位用縱式,千位用橫式,以此類推,遇零則置空,如圖:
如果把5根算籌以適當(dāng)?shù)姆绞饺糠湃?下面的表格中,那么可以表示的三位數(shù)的個(gè)數(shù)為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】點(diǎn)到點(diǎn), 及到直線的距離都相等,如果這樣的點(diǎn)恰好只有一個(gè),那么實(shí)數(shù)的值是( )
A. B. C. 或 D. 或
【答案】D
【解析】試題分析:由題意知在拋物線上,設(shè),則有,化簡得,當(dāng)時(shí),符合題意;當(dāng)時(shí),,有,,則,所以選D.
考點(diǎn):1、點(diǎn)到直線的距離公式;2、拋物線的性質(zhì).
【方法點(diǎn)睛】本題考查拋物線的概念、性質(zhì)以及數(shù)形結(jié)合思想,屬于中檔題,到點(diǎn)和直線的距離相等,則的軌跡是拋物線,再由直線與拋物線的位置關(guān)系可求;拋物線的定義是解決物線問題的基礎(chǔ),它能將兩種距離(拋物線上的點(diǎn)到到焦點(diǎn)的距離、拋物線上的點(diǎn)到準(zhǔn)線的距離)進(jìn)行等量轉(zhuǎn)化,如果問題中涉及拋物線的焦點(diǎn)和準(zhǔn)線,又能與距離聯(lián)系起來,那么用拋物線的定義就能解決.
【題型】單選題
【結(jié)束】
13
【題目】在極坐標(biāo)系中,已知兩點(diǎn), ,則, 兩點(diǎn)間的距離為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面,底面為菱形,且,E為的中點(diǎn).
(1)求證:平面平面;
(2)棱上是否存在點(diǎn)F,使得平面?說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com