【題目】已知函數(shù)f(x)=aln(x+1)﹣x2在區(qū)間(0,1)內(nèi)任取兩個實數(shù)p,q,且p≠q,不等式 >1恒成立,則實數(shù)a的取值范圍為(
A.[15,+∞)
B.(﹣∞,15]
C.(12,30]
D.(﹣12,15]

【答案】A
【解析】解:∵ 的幾何意義為: 表示點(p+1,f(p+1)) 與點(q+1,f(q+1))連線的斜率,
∵實數(shù)p,q在區(qū)間(0,1)內(nèi),故p+1 和q+1在區(qū)間(1,2)內(nèi).
不等式 >1恒成立,
∴函數(shù)圖象上在區(qū)間(1,2)內(nèi)任意兩點連線的斜率大于1,
故函數(shù)的導數(shù)大于1在(1,2)內(nèi)恒成立.
由函數(shù)的定義域知,x>﹣1,
∴f′(x)= >1 在(1,2)內(nèi)恒成立.
即 a>2x2+3x+1在(1,2)內(nèi)恒成立.
由于二次函數(shù)y=2x2+3x+1在[1,2]上是單調(diào)增函數(shù),
故 x=2時,y=2x2+3x+1在[1,2]上取最大值為15,
∴a≥15
∴a∈[15,+∞).
故選A.
【考點精析】根據(jù)題目的已知條件,利用函數(shù)單調(diào)性的判斷方法的相關知識可以得到問題的答案,需要掌握單調(diào)性的判定法:①設x1,x2是所研究區(qū)間內(nèi)任兩個自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,若存在x1、x2、…xn滿足 = =…= = ,則x1+x2+…+xn的值為(
A.4
B.6
C.8
D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知:向量 =( ,0),O為坐標原點,動點M滿足:| + |+| |=4.
(1)求動點M的軌跡C的方程;
(2)已知直線l1 , l2都過點B(0,1),且l1⊥l2 , l1 , l2與軌跡C分別交于點D,E,試探究是否存在這樣的直線使得△BDE是等腰直角三角形.若存在,指出這樣的直線共有幾組(無需求出直線的方程);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù)),以原點O為極點,x軸正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ2=4 ρsin(θ+ )﹣4.
(Ⅰ)求曲線C2的直角坐標方程,并指出其表示何種曲線;
(Ⅱ)若曲線C1與曲線C2交于A、B兩點,求|AB|的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2﹣ax+ln(x+1)(a∈R).
(1)當a=2時,求函數(shù)f(x)的極值點;
(2)若函數(shù)f(x)在區(qū)間(0,1)上恒有f′(x)>x,求實數(shù)a的取值范圍;
(3)已知c1>0,且cn+1=f′(cn)(n=1,2,…),在(2)的條件下,證明數(shù)列{cn}是單調(diào)遞增數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓C: (a>b>0)的離心率為 ,以橢圓C的左頂點T為圓心作圓T:(x+2)2+y2=r2(r>0),設圓T與橢圓C交于點M與點N.
(1)求橢圓C的方程;
(2)求 的最小值;
(3)設點P是橢圓C上異于M,N的任意一點,且直線MP,NP分別與x軸交于點R,S,O為坐標原點,求證:|OR||OS|是定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】工人在懸掛如圖所示的一個正六邊形裝飾品時,需要固定六個位置上的螺絲,首先隨意擰緊一個螺絲,接著擰緊距離它最遠的第二個螺絲,再隨意擰緊第三個螺絲,接著擰緊距離第三個螺絲最遠的第四個螺絲,第五個和第六個以此類推,則不同的固定方式有種.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)y=cos(2x+ )的圖象向左平移 個單位后,得到f(x)的圖象,則(
A.f(x)=﹣sin2x
B.f(x)的圖象關于x=﹣ 對稱
C.f( )=
D.f(x)的圖象關于( ,0)對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸入的x∈[﹣1,3],則輸出的y屬于(
A.[0,2]
B.[1,2]
C.[0,1]
D.[﹣1,5]

查看答案和解析>>

同步練習冊答案