【題目】某家庭進行理財投資,根據(jù)長期收益率市場調查和預測,投資債券等穩(wěn)鍵型產品A的收益與投資成正比,其關系如圖1所示;投資股票等風險型產品B的收益與投資的算術平方根成正比,其關系如圖2所示(收益與投資單位:萬元).
(1)分別將A、B兩種產品的收益表示為投資的函數(shù)關系式;
(2)該家庭現(xiàn)有10萬元資金,并全部投資債券等穩(wěn)鍵型產品A及股票等風險型產品B兩種產品,問:怎樣分配這10萬元投資,才能使投資獲得最大收益,其最大收益為多少萬元?

【答案】
(1)解:設投資為x萬元,

A、B兩產品獲得的收益分別為f(x)、g(x)萬元,

由題意,f(x)=k1x,g(x)= ,k1,k2≠0,x≥0,

又由圖知f(1.8)=0.45,g(4)=2.5;解得 ,k2= ,

∴f(x)= ,x≥0.g(x)=


(2)解:設對股票等風險型產品B投資x萬元,則對債券等穩(wěn)鍵型產品A投資(10﹣x)萬元,

記家庭進行理財投資獲取的收益為y萬元,

則y= ,x≥0.

,則x=t2,0≤t≤

∴y=﹣ ,

當t= ,也即x= 時,y取最大值

答:對股票等風險型產品B投資 萬元,對債券等穩(wěn)鍵型產品A投資 萬元時,

可獲最大收益 萬元


【解析】(1)設投資為x萬元,A、B兩產品獲得的收益分別為f(x)、g(x)萬元,由題意,f(x)=k1x,g(x)= ,k1 , k2≠0,x≥0,再由圖象能求出A、B兩種產品的收益表示為投資的函數(shù)關系式.(2)設對股票等風險型產品B投資x萬元,則對債券等穩(wěn)鍵型產品A投資(10﹣x)萬元,記家庭進行理財投資獲取的收益為y萬元,則y= ,x≥0.利用換元法能求出怎樣分配這10萬元投資,才能使投資獲得最大收益,并能求出其最大收益為多少萬元.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試數(shù)學成績的頻率分布直方圖如圖,其中成績分組區(qū)間如下:

組號

第一組

第二組

第三組

第四組

第五組

分組

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

(Ⅰ)求圖中a的值;
(Ⅱ)根據(jù)頻率分布直方圖,估計這100名學生期中考試數(shù)學成績的平均分;
(Ⅲ)現(xiàn)用分層抽樣的方法從第3、4、5組中隨機抽取6名學生,將該樣本看成一個總體,從中隨機抽取2名,求其中恰有1人的分數(shù)不低于90分的概率?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是首項為正數(shù)的等差數(shù)列,數(shù)列的前項和為.

(1)求數(shù)列的通項公式;

(2)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點P是圓F1:(x﹣1)2+y2=8上任意一點,點F2與點F1關于原點對稱,線段PF2的垂直平分線分別與PF1,PF2交于M,N兩點.

(1)求點M的軌跡C的方程;

(2)過點G(0, )的動直線l與點的軌跡C交于A,B兩點,在y軸上是否存在定點Q,使以AB為直徑的圓恒過這個點?若存在,求出點Q的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校100名學生期中考試語文成績的頻率分布直方圖如圖所示,其中成績分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中a的值;
(2)根據(jù)頻率分布直方圖,估計這100名學生語文成績的平均分;
(3)若這100名學生語文成績某些分數(shù)段的人數(shù)(x)與數(shù)學成績相應分數(shù)段的人數(shù)(y)之比如表所示,求數(shù)學成績在[50,90)之外的人數(shù).

分數(shù)段

[50,60)

[60,70)

[70,80)

[80,90)

x:y

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別為內角A,B,C的對邊,且2asinA=(2b+c)sinB+(2c+b)sinC.
(1)求A的大小;
(2)求sinB+sinC的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖是一個空間幾何體的正視圖和俯視圖,則它的側視圖為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知A,B,C為銳角△ABC的內角, =(sinA,sinBsinC), =(1,﹣2),
(1)tanB,tanBtanC,tanC能否構成等差數(shù)列?并證明你的結論;
(2)求tanAtanBtanC的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一次購物抽獎活動中,假設某10張券中有一等獎券1張,可獲價值50元的獎品;有二等獎券3張,每張可獲價值10元的獎品;其余6張沒有獎,某顧客從此10張券中任抽2張,求:
(Ⅰ)該顧客中獎的概率;
(Ⅱ)該顧客獲得的獎品總價值ξ(元)的概率分布列和期望Eξ.

查看答案和解析>>

同步練習冊答案