【題目】將函數(shù)y=sin(2x+ )的圖象向右平移 個(gè)最小正周期后,所得圖象對(duì)應(yīng)的函數(shù)為(
A.y=sin(2x﹣
B.y=sin(2x﹣
C.y=sin(2x﹣
D.y=sin(2x+

【答案】A
【解析】解:函數(shù)的最小正周期T= =π,

∴函數(shù)向右平移 個(gè)單位后的函數(shù)為y=sin[2(x﹣ )+ ]=sin(2x﹣ ).

故選A.

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識(shí),掌握?qǐng)D象上所有點(diǎn)向左(右)平移個(gè)單位長(zhǎng)度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的橫坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(縱坐標(biāo)不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點(diǎn)的縱坐標(biāo)伸長(zhǎng)(縮短)到原來(lái)的倍(橫坐標(biāo)不變),得到函數(shù)的圖象.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知各項(xiàng)為正的等比數(shù)列{an}的前n項(xiàng)和為Sn , S4=30,過(guò)點(diǎn)P(n,log2an)和Q(n+2,log2an+1)(n∈N*)的直線的一個(gè)方向向量為(﹣1,﹣1)
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn= ,數(shù)列{bn}的前n項(xiàng)和為T(mén)n , 證明:對(duì)于任意n∈N* , 都有Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三棱柱ABC﹣A1B1C1中,側(cè)棱AA1⊥底面ABC,AA1=2,AB=BC=1,∠ABC=90°,外接球的球心為O,點(diǎn)E是側(cè)棱BB1上的一個(gè)動(dòng)點(diǎn).有下列判斷: ①直線AC與直線C1E是異面直線;②A1E一定不垂直于AC1;③三棱錐E﹣AA1O的體積為定值;④AE+EC1的最小值為2
其中正確的個(gè)數(shù)是(

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知銳角三角形的兩個(gè)內(nèi)角A,B滿足 ,則有(
A.sin2A﹣cosB=0
B.sin2A+cosB=0
C.sin2A+sinB=0
D.sin2A﹣sinB=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨機(jī)抽取某中學(xué)甲乙兩班各10名同學(xué),測(cè)量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖.
(1)根據(jù)莖葉圖判斷哪個(gè)班的平均身高較高;
(2)計(jì)算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學(xué)中隨機(jī)抽取兩名身高不低于173cm的同學(xué),求身高為176cm的同學(xué)被抽中的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)不等式|x﹣2|<a(a∈N*)的解集為A,且
(Ⅰ)求a的值
(Ⅱ)求函數(shù)f(x)=|x+a|+|x﹣2|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表是某廠的產(chǎn)量x與成本y的一組數(shù)據(jù):

產(chǎn)量x(千件)

2

3

5

6

成本y(萬(wàn)元)

7

8

9

12

(Ⅰ)根據(jù)表中數(shù)據(jù),求出回歸直線的方程 = x (其中 = , =
(Ⅱ)預(yù)計(jì)產(chǎn)量為8千件時(shí)的成本.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,所有正確的序號(hào)有( )
①在同一坐標(biāo)系中,函數(shù)y=2x與函數(shù)y=log2x的圖象關(guān)于直線y=x對(duì)稱;
②函數(shù)f(x)=ax+1(a>0,且a≠1)的圖象經(jīng)過(guò)定點(diǎn)(0,2);
③函數(shù) 的最大值為1;
④任取x∈R,都有3x>2x
A.①②③④
B.②
C.①②
D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓C: =1(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為 ,直線y=k(x﹣1)與橢圓C交于不同的兩點(diǎn) M,N.
(1)求橢圓C的方程,并求其焦點(diǎn)坐標(biāo);
(2)當(dāng)△AMN的面積為 時(shí),求k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案