精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓的左、右焦點分別為、的直線與橢圓交于、兩點,是以為直角頂點的等腰直角三角形,則橢圓的離心率為__________

【答案】

【解析】分析:設|F1F2|=2c,|AF1|=m,若△ABF1構成以A為直角頂點的等腰直角三角形,則|AB|=|AF1|=m,|BF1|=m,再由橢圓的定義和周長的求法,可得m,再由勾股定理,可得a,c的方程,求得,開方得答案.

詳解:如圖,設|F1F2|=2c,|AF1|=m,

△ABF1構成以A為直角頂點的等腰直角三角形,

|AB|=|AF1|=m,|BF1|=m,

由橢圓的定義可得△ABF1的周長為4a,

即有4a=2m+m,即m=2(2﹣)a,

|AF2|=2a﹣m=(2﹣2)a,

在直角三角形AF1F2中,

|F1F2|2=|AF1|2+|AF2|2,

即4c2=4(2﹣2a2+4(﹣1)2a2,

∴c2=(9﹣6)a2,

則e2==9﹣6=,

∴e=

故答案為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某冰糖橙,甜橙的一種,云南著名特產,以味甜皮薄著稱。該橙按照等級可分為四類:珍品、特級、優(yōu)級和一級(每箱有5kg,某采購商打算訂購一批橙子銷往省外,并從采購的這批橙子中隨機抽取100箱,利用橙子的等級分類標準得到的數據如下表:

等級

珍品

特級

優(yōu)級

一級

箱數

40

30

10

20

1)若將頻率改為概率,從這100箱橙子中有放回地隨機抽取4箱,求恰好抽到2箱是一級品的概率:

2)利用樣本估計總體,莊園老板提出兩種購銷方案供采購商參考:

方案一:不分等級賣出,價格為27/kg;

方案二:分等級賣出,分等級的橙子價格如下:

等級

珍品

特級

優(yōu)級

一級

售價(元/kg

36

30

24

18

從采購商的角度考慮,應該采用哪種方案?

3)用分層抽樣的方法從這100箱橙子中抽取10箱,再從抽取的10箱中隨機抽取3箱,X表示抽取的是珍品等級,求x的分布列及數學期望EX.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知O為坐標原點,拋物線Cy2=8x上一點A到焦點F的距離為6,若點P為拋物線C準線上的動點,則|OP|+|AP|的最小值為( 。

A. 4B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】高考數學考試中有12道選擇題,每道選擇題有4個選項,其中有且僅有一個是正確的.評分標準規(guī)定:在每小題給出的四個選項中,只有一項是符合題目要求的,答對得5分,不答或答錯得0分.某考生每道選擇題都選出一個答案,能確定其中有8道題的答案是正確的,而其余題中,有兩道題都可判斷出兩個選項是錯誤的,有一道題能判斷出一個選項是錯誤的,還有一道題因不理解題意只能亂猜.試求該考生的選擇題:

1)得60分的概率;

2)得多少分的概率最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線的參數方程是是參數),以坐標原點為原點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(1)判斷直線與曲線的位置關系;

(2)過直線上的點作曲線的切線,求切線長的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了檢測某種零件的一條生產線的生產過程,從生產線上隨機抽取一批零件,根據其尺寸的數據分成,,,,組,得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間之外,則認為該零件屬不合格的零件,其中分別為樣本平均和樣本標準差,計算可得(同一組中的數據用該組區(qū)間的中點值作代表).

1)若一個零件的尺寸是,試判斷該零件是否屬于不合格的零件;

2)工廠利用分層抽樣的方法從樣本的前組中抽出個零件,標上記號,并從這個零件中再抽取個,求再次抽取的個零件中恰有個尺寸小于的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設甲、乙兩位同學上學期間,每天7:30之前到校的概率均為.假定甲、乙兩位同學到校情況互不影響,且任一同學每天到校情況相互獨立.

(Ⅰ)用表示甲同學上學期間的三天中7:30之前到校的天數,求隨機變量的分布列和數學期望;

(Ⅱ)設為事件“上學期間的三天中,甲同學在7:30之前到校的天數比乙同學在7:30之前到校的天數恰好多2”,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(1)當時,討論函數的單調性

(2)當時,,對任意,都有恒成立,求實數b的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(I)求的單調區(qū)間;

(II)討論上的零點個數.

查看答案和解析>>

同步練習冊答案