【題目】(選修4﹣1:幾何證明選講)
如圖,直線AB為圓的切線,切點(diǎn)為B,點(diǎn)C在圓上,∠ABC的角平分線BE交圓于點(diǎn)E,DB垂直BE交圓于D.
(1)證明:DB=DC;
(2)設(shè)圓的半徑為1,BC= ,延長(zhǎng)CE交AB于點(diǎn)F,求△BCF外接圓的半徑.
【答案】
(1)證明:連接DE交BC于點(diǎn)G.
由弦切角定理可得∠ABE=∠BCE,而∠ABE=∠CBE,
∴∠CBE=∠BCE,BE=CE.
又∵DB⊥BE,∴DE為⊙O的直徑,∠DCE=90°.
∴△DBE≌△DCE,∴DC=DB.
(2)證明:由(1)可知:∠CDE=∠BDE,DB=DC.
故DG是BC的垂直平分線,∴BG= .
設(shè)DE的中點(diǎn)為O,連接BO,則∠BOG=60°.
從而∠ABE=∠BCE=∠CBE=30°.
∴CF⊥BF.
∴Rt△BCF的外接圓的半徑= .
【解析】(1)連接DE交BC于點(diǎn)G,由弦切角定理可得∠ABE=∠BCE,由已知角平分線可得∠ABE=∠CBE,于是得到∠CBE=∠BCE,BE=CE.由已知DB⊥BE,可知DE為⊙O的直徑,Rt△DBE≌Rt△DCE,利用三角形全等的性質(zhì)即可得到DC=DB.(2)由(1)可知:DG是BC的垂直平分線,即可得到BG= .設(shè)DE的中點(diǎn)為O,連接BO,可得∠BOG=60°.從而∠ABE=∠BCE=∠CBE=30°.得到CF⊥BF.進(jìn)而得到Rt△BCF的外接圓的半徑= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于函數(shù),下列命題:①時(shí),為奇函數(shù);②的圖象關(guān)于中心對(duì)稱(chēng);③,時(shí),方程只有一個(gè)實(shí)根;④方程至多有兩個(gè)實(shí)根,其中正確的個(gè)數(shù)有
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】上海自貿(mào)區(qū)某種進(jìn)口產(chǎn)品的關(guān)稅稅率為,其市場(chǎng)價(jià)格(單位:千元,與市場(chǎng)供應(yīng)量(單位:萬(wàn)件)之間近似滿(mǎn)足關(guān)系式:.
(1)請(qǐng)將表示為關(guān)于的函數(shù),并根據(jù)下列條件計(jì)算:若市場(chǎng)價(jià)格為7千元,則市場(chǎng)供應(yīng)量約為2萬(wàn)件.試確定的值;
(2)當(dāng)時(shí),經(jīng)調(diào)查,市場(chǎng)需求量(單位:萬(wàn)件)與市場(chǎng)價(jià)格近似滿(mǎn)足關(guān)系式:.為保證市場(chǎng)供應(yīng)量不低于市場(chǎng)需求量,試求市場(chǎng)價(jià)格的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015·湖南)某商場(chǎng)舉行有獎(jiǎng)促銷(xiāo)活動(dòng),顧客購(gòu)買(mǎi)一定金額商品后即可抽獎(jiǎng),每次抽獎(jiǎng)都從裝有4個(gè)紅球、6個(gè)白球的甲箱和裝有5個(gè)紅球、5個(gè)白球的乙箱中,各隨機(jī)摸出1個(gè)球,在摸出的2個(gè)球中,若都是紅球,則獲一等獎(jiǎng);若只有1個(gè)紅球,則獲二等獎(jiǎng);若沒(méi)有紅球,則不獲獎(jiǎng),求下列問(wèn)題:(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為 X ,求 X 的分布列和數(shù)學(xué)期望.
(1)(1)求顧客抽獎(jiǎng)1次能獲獎(jiǎng)的概率
(2)(2)若某顧客有3次抽獎(jiǎng)機(jī)會(huì),記該顧客在3次抽獎(jiǎng)中獲一等獎(jiǎng)的次數(shù)為 , 求的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人組成“星隊(duì)”參加猜成語(yǔ)活動(dòng),每輪活動(dòng)由甲、乙各猜一個(gè)成語(yǔ),在一輪活動(dòng)中,如果兩人都猜對(duì),則“星隊(duì)”得3分;如果只有一個(gè)人猜對(duì),則“星隊(duì)”得1分;如果兩人都沒(méi)猜對(duì),則“星隊(duì)”得0分.已知甲每輪猜對(duì)的概率是 ,乙每輪猜對(duì)的概率是 ;每輪活動(dòng)中甲、乙猜對(duì)與否互不影響.各輪結(jié)果亦互不影響.假設(shè)“星隊(duì)”參加兩輪活動(dòng),求:
(1)“星隊(duì)”至少猜對(duì)3個(gè)成語(yǔ)的概率;
(2)“星隊(duì)”兩輪得分之和為X的分布列和數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)在區(qū)間上的最大值為4,最小值為1.
(1)求實(shí)數(shù)、的值;
(2)記,若在上是單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
(3)對(duì)于函數(shù),用,1,2,,,將區(qū)間任意劃分成個(gè)小區(qū)間,若存在常數(shù),使得和式對(duì)任意的劃分恒成立,則稱(chēng)函數(shù)為上的有界變差函數(shù).記,試判斷函數(shù)是否為在上的有界變差函數(shù)?若是,求的最小值;若不是,請(qǐng)說(shuō)明理由.
(參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中 中,已知曲線 經(jīng)過(guò)點(diǎn) ,其參數(shù)方程為 ( 為參數(shù)),以原點(diǎn) 為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線 的極坐標(biāo)方程;
(2)若直線 交 于點(diǎn) ,且 ,求證: 為定值,并求出這個(gè)定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若對(duì)于定義在上的函數(shù),其圖象是連續(xù)不斷的,且存在常數(shù)使得對(duì)任意實(shí)數(shù)都成立,則稱(chēng)是一個(gè)“特征函數(shù)”.下列結(jié)論中正確的個(gè)數(shù)為( 。
①是常數(shù)函數(shù)中唯一的“特征函數(shù)”;
②不是“特征函數(shù)”;
③“特征函數(shù)”至少有一個(gè)零點(diǎn);
④是一個(gè)“特征函數(shù)”.
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 (t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2= ,且直線l經(jīng)過(guò)曲線C的左焦點(diǎn)F. ( I )求直線l的普通方程;
(Ⅱ)設(shè)曲線C的內(nèi)接矩形的周長(zhǎng)為L(zhǎng),求L的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com