若函數(shù)y=f(x)圖象上存在三點(diǎn)A、B、C,使,則稱(chēng)此函數(shù)有“中位點(diǎn)”,下列函數(shù)①y=cosx,②y=|x-1|,③y=x3+sinx-2,④y=cosx+x2中,沒(méi)有“中位點(diǎn)”的函數(shù)個(gè)數(shù)為( )
A.1
B.2
C.3
D.4
【答案】分析:函數(shù)y=f(x)圖象上存在三點(diǎn)A、B、C,使,則稱(chēng)此函數(shù)有“中位點(diǎn)”,我們可以根據(jù)“中位點(diǎn)”的定義,對(duì)題目中的四個(gè)函數(shù)逐一進(jìn)行判斷即可得到答案.
解答:解:若函數(shù)y=f(x)圖象上存在三點(diǎn)A、B、C,
使,則稱(chēng)此函數(shù)有“中位點(diǎn)”,
此時(shí)函數(shù)圖象上必然有三點(diǎn)共線,
函數(shù)y=cosx的圖象上(0,1),(,0),(π,-1)三點(diǎn)顯然共線,
函數(shù)y=|x-1|的圖象上(1,0),(2,1),(3,2)三點(diǎn)顯然共線,
函數(shù)y=x3+sinx-2的圖象上(1,sin1-1),(0,-2),(-1,-sin1-3)三點(diǎn)也共線,
但函數(shù)y=cosx+x2的圖象上任意三點(diǎn)都不共線,
故函數(shù)y=cosx+x2沒(méi)有中位點(diǎn),
故選A
點(diǎn)評(píng):這是一道新運(yùn)算類(lèi)的題目,其特點(diǎn)一般是“新”而不“難”,處理的方法一般為:根據(jù)新運(yùn)算的定義,將已知中的數(shù)據(jù)代入進(jìn)行運(yùn)算,易得最終結(jié)果.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱(chēng)直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
3
sin(ωx+?)-cos(ωx+?)(0<?<π,ω>0)

(Ⅰ)若函數(shù)y=f(x)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為
π
2
,且它的圖象過(guò)(0,1)點(diǎn),求函數(shù)y=f(x)的表達(dá)式;
(Ⅱ)將(Ⅰ)中的函數(shù)y=f(x)的圖象向右平移
π
6
個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞增區(qū)間;
(Ⅲ)若f(x)的圖象在x∈(a,a+
1
100
) (a∈R)
上至少出現(xiàn)一個(gè)最高點(diǎn)或最低點(diǎn),則正整數(shù)ω的最小值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2sin(ωx+?-
π
6
)(0<?<π,ω>0),
(1)若函數(shù)y=f(x)圖象的兩相鄰對(duì)稱(chēng)軸間的距離為
π
2
,且它的圖象過(guò)(0,1)點(diǎn),求函數(shù)y=f(x)的表達(dá)式;
(2)將(1)中的函數(shù)y=f(x)的圖象向右平移
π
6
個(gè)單位后,再將得到的圖象上各點(diǎn)的橫坐標(biāo)伸長(zhǎng)到原來(lái)的4倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象,求函數(shù)y=g(x)的單調(diào)遞增區(qū)間;
(3)若f(x)的圖象在x∈(a,a+
1
100
)(a∈R)上至少出現(xiàn)一個(gè)最高點(diǎn)或最低點(diǎn),則正整數(shù)ω的最小值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)g(x)=x2-2(x∈R),f(x)=
g(x)+x+4(x<g(x))
g(x)-x(x≥g(x))
若函數(shù)y=f(x)圖象與直線y=k(k為常數(shù))有且只有一個(gè)交點(diǎn),則k的取值范圍是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•藍(lán)山縣模擬)已知函數(shù)f(x)=
-x3+x2+bx+c,(x<1)
alnx,(x≥1)
和圖象過(guò)坐標(biāo)原點(diǎn)O,且在點(diǎn)(-1,f(-1))處的切線的斜率是-5.
(1)求實(shí)數(shù)b,c的值;
(2)求函數(shù)f(x)在區(qū)間[-1,1]上的最小值;
(3)若函數(shù)y=f(x)圖象上存在兩點(diǎn)P,Q,使得對(duì)任意給定的正實(shí)數(shù)a都滿足△POQ是以O(shè)為直角頂點(diǎn)的直角三角形,且此三角形斜邊中點(diǎn)在y軸上,求點(diǎn)P的橫坐標(biāo)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案