13.已知每生產(chǎn)100克餅干的原材料加工費為1.8元,某食品加工廠對餅干采用兩種包裝,其包裝費用、銷售價格如表所示:
型號小包裝大包裝
重量100克300克
包裝費0.5元0.7元
銷售價格3.00元8.4元
則下列說法正確的是( 。
①買小包裝實惠;②買大包裝實惠;③賣3小包比賣1大包盈利多;④賣1大包比賣3小包盈利多.
A.①②B.①④C.②③D.②④

分析 分別求出大包裝和小包裝每100克的價格進行比較,以及賣1大包和3小包的盈利即可得到結(jié)論.

解答 解:大包裝300克8.4元,
則等價為100克2.8元,小包裝100克3元,
則買大包裝實惠,故②正確,
賣1大包裝盈利8.4-0.7-1.8×3=2.3元,
賣1小包裝盈利3-0.5-1.8=0.7,
則賣3小包盈利0.7×3=2.1元,
則賣1大包比賣3小包盈利多.故④正確,
故選:D

點評 本題主要考查函數(shù)模型的應(yīng)用,比較基礎(chǔ).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.橢圓C的左、右焦點為F1(-1,0)、F2(1,0),且點P(1,$\frac{2\sqrt{3}}{3}$)在橢圓C上.
(1)求橢圓C的方程;
(2)設(shè)過F1的動直線l交橢圓C于A,B兩點,求△F2AB面積的最大值及面積最大時直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.在空間四邊形ABCD中,AB⊥AC,AB⊥BD,AC=2,AB=BD=1,AC與BD所成的角為60°,則CD=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$),f(x)的部分圖象如圖示,則關(guān)于y=f(x)錯誤的是( 。
A.最小正周期為π
B.向右平移$\frac{π}{6}$個單位得到函數(shù)y=sin(2x-$\frac{π}{6}$)
C.在區(qū)間[0,$\frac{π}{2}$]上的值域為[-$\frac{1}{2},\frac{1}{2}$]
D.向左平移$\frac{π}{6}$個單位得到的圖象關(guān)于y軸對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.雙曲線${x^2}-\frac{y^2}{m}=1$的離心率大于$\sqrt{2}$,則( 。
A.$m>\frac{1}{2}$B.m≥1C.m>1D.m>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知數(shù)列{an}中,a1=3,a2=5,且對于任意的大于2的正整數(shù)n,有an=an-1-an-2,則a2015=-5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.?dāng)?shù)列{an}滿足a1=1,且對于任意的n∈N*都滿足an+1=$\frac{{a}_{n}}{3{a}_{n}+1}$,則數(shù)列{anan+1}的前n項和為 (  )
A.$\frac{1}{3n+1}$B.$\frac{n}{3n+1}$C.$\frac{1}{3n-2}$D.$\frac{n}{3n-2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.過橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點F1(-$\sqrt{3}$,0),而且過點C($\sqrt{3}$,$\frac{1}{2}$)
(1)求橢圓E的方程:
(2)過點C的直線l與橢圓E的另一交點為D,與y軸的交點為B.過原點O且平行于l的直線與橢圓的一個交點為H.若CD•CB=2OH2,求直線l的方程.
(3)設(shè)橢圓E的上下頂點分別為A1,A2,P是橢圓上異于A1,A2的任一點,直線PA1,PA2分別交x軸于點N,M,若直線0T與過點M,N的圓G相切,切點為T.線段0T的長是否為定值,若是并求出該定值,不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,數(shù)軸x,y的交點為O,夾角為θ,與x軸、y軸正向同向的單位向量分別是$\overrightarrow{e_1},\overrightarrow{e_2}$.由平面向量基本定理,對于平面內(nèi)的任一向量$\overrightarrow{OP}$,存在唯一的有序?qū)崝?shù)對(x,y),使得$\overrightarrow{OP}=x\overrightarrow{e_1}+y\overrightarrow{e_2}$,我們把(x,y)叫做點P在斜坐標系xOy中的坐標(以下各點的坐標都指在斜坐標系xOy中的坐標).
(1)若θ=90°,$\overrightarrow{OP}$為單位向量,且$\overrightarrow{OP}$與$\overrightarrow{e_1}$的夾角為120°,求點P的坐標;
(2)若θ=45°,點P的坐標為$({1,\sqrt{2}})$,求向量$\overrightarrow{OP}$與$\overrightarrow{e_1}$的夾角;
(3)若θ=60°,求過點A(2,1)的直線l的方程,使得原點O到直線l的距離最大.

查看答案和解析>>

同步練習(xí)冊答案