如圖,一圓形紙片的圓心為O,  F是圓內(nèi)一定點,M是圓周
上一動點,把紙片折疊使M與F重合,然后抹平紙片,折痕
為CD, 設(shè)CD與OM交于P, 則點P的軌跡是( 
A.橢圓B.雙曲線
C.拋物線D.圓
A

分析:根據(jù)CD是線段MF的垂直平分線.可推斷出|MP|=|PF|,進(jìn)而可知|PF|+|PO|=|PM|+|PO|=|MO|結(jié)果為定值,進(jìn)而根據(jù)橢圓的定義推斷出點P的軌跡.
解:由題意知,CD是線段MF的垂直平分線.
∴|MP|=|PF|,
∴|PF|+|PO|=|PM|+|PO|=|MO|(定值),
又顯然|MO|>|FO|,
∴根據(jù)橢圓的定義可推斷出點P軌跡是以F、O兩點為焦點的橢圓.
故選A
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩定點F1(-1,0)、F2(1,0),且|F1F2|是|PF1|與|PF2|的等差中項,則動點P的軌跡是(  )
A.橢圓B.雙曲線C.拋物線D.線段

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

((本小題滿分14分)
已知兩點M(-1,0),N(1,0),且點P使,成公差小于零的等差數(shù)列。
(1)點P的軌跡是什么曲線?
(2)若點P的坐標(biāo)為(x0,y0),記為θ的夾角,求tanθ

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
給定橢圓,稱圓心在坐標(biāo)原點,半徑為的圓是橢圓的“伴隨圓”. 若橢圓C的一個焦點為,其短軸上的一個端點到距離為
(Ⅰ)求橢圓及其“伴隨圓”的方程;
(Ⅱ)若過點的直線與橢圓C只有一個公共點,且截橢圓C的“伴隨圓”所得的弦長為,求的值;
(Ⅲ)過橢圓C“伴橢圓”上一動點Q作直線,使得與橢圓C都只有一個公共點,試判斷直線的斜率之積是否為定值,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓具有這樣的光學(xué)性質(zhì):從橢圓的一個焦點出發(fā)的光線,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個焦點.今有一個水平放置的橢圓形臺球盤,點A、B是它的焦點,長軸長為2a,焦距為2c,靜放在點A的小球(小球的半徑忽略不計)從點A沿直線出發(fā),經(jīng)橢圓壁反射后第一次回到點A時,小球經(jīng)過的路程是_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的右焦點為,右準(zhǔn)線為,點,線段于點,若,則="       " .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線與拋物線有 一個公共的焦點,且兩曲線的一個交點為,若,則雙曲線方程為               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.設(shè)分別是橢圓的左、右焦點.若點在橢圓上,且,則                                                            
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案