【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,以原點0為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)若曲線方程中的參數(shù)是,且有且只有一個公共點,求的普通方程;

(2)已知點,若曲線方程中的參數(shù)是,,且相交于,兩個不同點,求的最大值.

【答案】(1) (2)

【解析】

1)利用公式直接把極坐標(biāo)方程化為直角坐標(biāo)方程,利用圓與圓相切,可以得到等式,求出的值;

2)把曲線的參數(shù)方程代入曲線的直角坐標(biāo)方程,得到一個一元二次方程,設(shè)與點,相對應(yīng)的參數(shù)分別是,,利用一元二次方程根與系數(shù)關(guān)系,

求出的表達(dá)式,求出最大值。

解:(1)曲線的直角坐標(biāo)方程為,

是曲線的參數(shù),的普通方程為,

有且只有一個公共點,,

的普通方程為

(2)是曲線的參數(shù),是過點的一條直線,

設(shè)與點,相對應(yīng)的參數(shù)分別是,,把,代入,

,

當(dāng)時,,

取最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓G的中心在坐標(biāo)原點,其中一個焦點為圓Fx2+y22x0的圓心,右頂點是圓Fx軸的一個交點.已知橢圓G與直線lxmy10相交于AB兩點.

I)求橢圓的方程;

(Ⅱ)求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線的焦點為,過點作垂直于軸的直線與拋物線交于,兩點,且以線段為直徑的圓過點.

(1)求拋物線的方程;

(2)若直線與拋物線交于,兩點,點為曲線:上的動點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的焦距為,點在橢圓上,且的最小值是為坐標(biāo)原點).

1)求橢圓的標(biāo)準(zhǔn)方程.

2)已知動直線與圓相切,且與橢圓交于,兩點.是否存在實數(shù),使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為方便市民出行,倡導(dǎo)低碳出行.某市公交公司推出利用支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,在推廣期內(nèi)采用隨機(jī)優(yōu)惠鼓勵市民掃碼支付乘車.該公司某線路公交車隊統(tǒng)計了活動推廣期第一周內(nèi)使用掃碼支付的情況,其中(單位:天)表示活動推出的天次,(單位:十人次)表示當(dāng)天使用掃碼支付的人次,整理后得到如圖所示的統(tǒng)計表1和散點圖.

表1:

x

第1天

第2天

第3天

第4天

第5天

第6天

第7天

y

7

12

20

33

54

90

148

(1)由散點圖分析后,可用作為該線路公交車在活動推廣期使用掃碼支付的人次關(guān)于活動推出天次的回歸方程,根據(jù)表2的數(shù)據(jù),求此回歸方程,并預(yù)報第8天使用掃碼支付的人次(精確到整數(shù)).

表2:

img src="http://thumb.zyjl.cn/questionBank/Upload/2019/08/08/08/88254471/SYS201908080801220877999013_ST/SYS201908080801220877999013_ST.008.png" width="67" height="40" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" />

4

52

3.5

140

2069

112

表中,.

(2)推廣期結(jié)束后,該車隊對此期間乘客的支付情況進(jìn)行統(tǒng)計,結(jié)果如表3.

表3:

支付方式

現(xiàn)金

乘車卡

掃碼

頻率

10%

60%

30%

優(yōu)惠方式

無優(yōu)惠

按7折支付

隨機(jī)優(yōu)惠(見下面統(tǒng)計結(jié)果)

統(tǒng)計結(jié)果顯示,掃碼支付中享受5折支付的頻率為,享受7折支付的頻率為,享受9折支付的頻率為.已知該線路公交車票價為1元,將上述頻率作為相應(yīng)事件發(fā)生的概率,記隨機(jī)變量為在活動期間該線路公交車搭載乘客一次的收入(單位:元),求的分布列和期望.

參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為參考數(shù)據(jù):,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓過點、.

1)求橢圓的方程;

2、為橢圓的左、右焦點,直線與橢圓交于、兩點,求△面積的最大值;

3)求動點的軌跡方程,使得過點存在兩條互相垂直的直線,且都與橢圓只有一個公共點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】短道速滑隊組織6名隊員(包括賽前系列賽積分最靠前的甲乙丙三名隊員在內(nèi))參加冬奧會選拔賽,記甲得第一名,乙得第二名丙得第三名,若是真命題,是假命題,是真命題,則選拔賽的結(jié)果為(

A.甲得第一名、乙得第三名、丙得第二名

B.甲沒得第一名、乙沒得第二名、丙得第三名

C.甲得第一名、乙沒得第二名、丙得第三名

D.甲得第二名、乙得第一名、丙得第三名

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項數(shù)列的前n項和為,數(shù)列滿足.

1)求數(shù)列的通項公式;

2)數(shù)列滿足,它的前n項和為,若存在正整數(shù)n,使不等式成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】把一顆骰子投擲2次,觀察出現(xiàn)的點數(shù),并記第一次出現(xiàn)的點數(shù)為,第二次出現(xiàn)的點數(shù)為,試就方程組解答下列各題:

1)求方程組只有一個解的概率;

2)求方程組只有正數(shù)解的概率.

查看答案和解析>>

同步練習(xí)冊答案