4523.51402069112表中..(2)推廣期結(jié)束后.該車隊對此期間乘客的支付情況進(jìn)行統(tǒng)計.結(jié)果如表3.表3:支付方式現(xiàn)金乘車卡掃碼頻率10%60%30%優(yōu)惠方式無優(yōu)惠按7折支付隨機(jī)優(yōu)惠統(tǒng)計結(jié)果顯示.掃碼支付中享受5折支付的頻率為.享受7折支付的頻率為.享受9折支付的頻率為.已知該線路公交車票價為1元.將上述頻率作為相應(yīng)事件發(fā)生的概率.記隨機(jī)變量為在活動期間該線路公交車搭載乘客一次的收入.求的分布列和期望.參考公式:對于一組數(shù)據(jù).其回歸直線的斜率和截距的最小二乘估計分別為參考數(shù)據(jù):...">
【題目】為方便市民出行,倡導(dǎo)低碳出行.某市公交公司推出利用支付寶和微信掃碼支付乘車活動,活動設(shè)置了一段時間的推廣期,在推廣期內(nèi)采用隨機(jī)優(yōu)惠鼓勵市民掃碼支付乘車.該公司某線路公交車隊統(tǒng)計了活動推廣期第一周內(nèi)使用掃碼支付的情況,其中(單位:天)表示活動推出的天次,(單位:十人次)表示當(dāng)天使用掃碼支付的人次,整理后得到如圖所示的統(tǒng)計表1和散點(diǎn)圖.
表1:
x | 第1天 | 第2天 | 第3天 | 第4天 | 第5天 | 第6天 | 第7天 |
y | 7 | 12 | 20 | 33 | 54 | 90 | 148 |
(1)由散點(diǎn)圖分析后,可用作為該線路公交車在活動推廣期使用掃碼支付的人次關(guān)于活動推出天次的回歸方程,根據(jù)表2的數(shù)據(jù),求此回歸方程,并預(yù)報第8天使用掃碼支付的人次(精確到整數(shù)).
表2:
|
|
| img src="http://thumb.zyjl.cn/questionBank/Upload/2019/08/08/08/88254471/SYS201908080801220877999013_ST/SYS201908080801220877999013_ST.008.png" width="67" height="40" style="-aw-left-pos:0pt; -aw-rel-hpos:column; -aw-rel-vpos:paragraph; -aw-top-pos:0pt; -aw-wrap-type:inline" /> | ||
4 | 52 | 3.5 | 140 | 2069 | 112 |
表中,.
(2)推廣期結(jié)束后,該車隊對此期間乘客的支付情況進(jìn)行統(tǒng)計,結(jié)果如表3.
表3:
支付方式 | 現(xiàn)金 | 乘車卡 | 掃碼 |
頻率 | 10% | 60% | 30% |
優(yōu)惠方式 | 無優(yōu)惠 | 按7折支付 | 隨機(jī)優(yōu)惠(見下面統(tǒng)計結(jié)果) |
統(tǒng)計結(jié)果顯示,掃碼支付中享受5折支付的頻率為,享受7折支付的頻率為,享受9折支付的頻率為.已知該線路公交車票價為1元,將上述頻率作為相應(yīng)事件發(fā)生的概率,記隨機(jī)變量為在活動期間該線路公交車搭載乘客一次的收入(單位:元),求的分布列和期望.
參考公式:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為參考數(shù)據(jù):,,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列四個命題:①“”是“”成立的必要不充分條件②命題“若,則”的否命題是:“若,則”;③命題“,使得”的否定是:“,均有”④如果命題“”與命題“”都是真命題,那么命題一定是真命題;其中為真命題的個數(shù)是( )
A.4個B.3個C.2個D.1個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A,B分別是雙曲線的左右頂點(diǎn),設(shè)過的直線PA,PB與雙曲線分別交于點(diǎn)M,N,直線MN交x軸于點(diǎn)Q,過Q的直線交雙曲線的于S,T兩點(diǎn),且,則的面積( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過A(5,3),B(4,4)兩點(diǎn),且圓心在x軸上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線l過點(diǎn)(5,2),且被圓C所截得的弦長為6,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的非負(fù)半軸重合,且長度單位相同,直線的極坐標(biāo)方程為,曲線(為參數(shù)).其中.
(1)試寫出直線的直角坐標(biāo)方程及曲線的普通方程;
(2)若點(diǎn)為曲線上的動點(diǎn),求點(diǎn)到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線的參數(shù)方程為,以原點(diǎn)0為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)若曲線方程中的參數(shù)是,且與有且只有一個公共點(diǎn),求的普通方程;
(2)已知點(diǎn),若曲線方程中的參數(shù)是,,且與相交于,兩個不同點(diǎn),求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】圖1是由菱形,平行四邊形和矩形組成的一個平面圖形,其中,,,,將其沿,折起使得與重合,如圖2.
(1)證明:圖2中的平面平面;
(2)求圖2中點(diǎn)到平面的距離;
(3)求圖2中二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)若對任意,都有成立,求實數(shù)的取值范圍;
(3)若過點(diǎn)可作函數(shù)圖像的三條不同切線,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)典籍《九章算術(shù)》第七章“盈不足”中有一問題:“今有蒲生一日,長三尺,莞生一日,長一尺.蒲生日自半.莞生日自倍.問幾何日而長等?”(蒲常指一種多年生草本植物,莞指水蔥一類的植物)現(xiàn)欲知幾日后,莞高超過蒲高一倍.為了解決這個新問題,設(shè)計如圖所示的程序框圖,輸入,.那么在①處應(yīng)填_______和輸出的值為( )
A. 4B. 4
C. 3D. 3
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com