【題目】已知.

1)當(dāng)時(shí),解不等式

2)若關(guān)于的方程的解集中恰好有一個(gè)元素,求實(shí)數(shù)的值;

3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.

【答案】12,(3

【解析】

1)根據(jù)對(duì)數(shù)單調(diào)性化簡(jiǎn)不等式,再解分式不等式得結(jié)果;

2)先化簡(jiǎn)對(duì)數(shù)方程,再根據(jù)分類討論方程根的情況,最后求得結(jié)果;

3)先確定函數(shù)單調(diào)性,確定最值取法,再化簡(jiǎn)不等式,根據(jù)二次函數(shù)單調(diào)性確定最值,解得結(jié)果.

1)當(dāng)時(shí),

不等式解集為

2

①當(dāng)時(shí),僅有一解,滿足題意;

②當(dāng)時(shí),則

時(shí),解為,滿足題意;

時(shí),解為

此時(shí)

即有兩個(gè)滿足原方程的的根,所以不滿足題意;

綜上,,

3)因?yàn)?/span>上單調(diào)遞減,所以函數(shù)在區(qū)間上的最大值與最小值的差為,因此

對(duì)任意恒成立,

因?yàn)?/span>,所以上單調(diào)遞增,

所以

因此

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四棱錐中,平面平面,

1)證明:平面

2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)列滿足,

1)設(shè),證明是等差數(shù)列;

2)求的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)圍建一個(gè)面積為的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用的舊墻需維修,可供利用的舊墻足夠長(zhǎng)),其他三面圍墻要新建,在舊墻對(duì)面的新墻上要留一個(gè)寬的進(jìn)出口,如圖2所示.已知舊墻的維修費(fèi)用為,新墻的造價(jià)為.設(shè)利用舊墻的長(zhǎng)度為(單位:),修建此矩形場(chǎng)地圍墻的總費(fèi)用為(單位:元).

1)將表示為的函數(shù),并寫出此函數(shù)的定義域;

2)若要求用于維修舊墻的費(fèi)用不得超過修建此矩形場(chǎng)地圍墻的總費(fèi)用的15%,試確定,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知為正整數(shù),

1)證明:當(dāng)時(shí),;

2)對(duì)于,已知,求證:;

3)求出滿足等式的所有正整數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)求證:直線是曲線的切線;

(Ⅲ)寫出的一個(gè)值,使得函數(shù)有三個(gè)不同零點(diǎn)(只需直接寫出數(shù)值)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

(1)當(dāng)時(shí),求函數(shù)上的值域;

(2)若函數(shù)上的最小值為3,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】行了一次水平測(cè)試。用系統(tǒng)抽樣的方法抽取了50名學(xué)生的數(shù)學(xué)成績(jī),準(zhǔn)備進(jìn)行分析和研究。經(jīng)統(tǒng)計(jì)成績(jī)的分組及各組的頻數(shù)如下:2;3;10;15;12;8.

)頻率分布表

分組

頻數(shù)

頻率

2

3

10

15

12

8

合計(jì)

50

頻率分布直方圖為

)完成樣本的頻率分布表;畫出頻率分直方圖;

)估計(jì)成績(jī)?cè)?/span>85分以下的學(xué)生比例;

)請(qǐng)你根據(jù)以上信息去估計(jì)樣本的眾數(shù)、中位數(shù)、平均數(shù).(精確到0.01

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓 的左、右焦點(diǎn)分別為,其離心率,焦距為4.

(Ⅰ)求橢圓的方程;

(Ⅱ)若是橢圓上不重合的四個(gè)點(diǎn),且滿足,,求的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案