【題目】已知.
(1)當(dāng)時(shí),解不等式;
(2)若關(guān)于的方程的解集中恰好有一個(gè)元素,求實(shí)數(shù)的值;
(3)設(shè),若對(duì)任意,函數(shù)在區(qū)間上的最大值與最小值的差不超過,求的取值范圍.
【答案】(1)(2)或,(3)
【解析】
(1)根據(jù)對(duì)數(shù)單調(diào)性化簡(jiǎn)不等式,再解分式不等式得結(jié)果;
(2)先化簡(jiǎn)對(duì)數(shù)方程,再根據(jù)分類討論方程根的情況,最后求得結(jié)果;
(3)先確定函數(shù)單調(diào)性,確定最值取法,再化簡(jiǎn)不等式,根據(jù)二次函數(shù)單調(diào)性確定最值,解得結(jié)果.
(1)當(dāng)時(shí),
不等式解集為
(2)
①當(dāng)時(shí),僅有一解,滿足題意;
②當(dāng)時(shí),則,
若時(shí),解為,滿足題意;
若時(shí),解為
此時(shí)
即有兩個(gè)滿足原方程的的根,所以不滿足題意;
綜上,或,
(3)因?yàn)?/span>在上單調(diào)遞減,所以函數(shù)在區(qū)間上的最大值與最小值的差為,因此
即對(duì)任意恒成立,
因?yàn)?/span>,所以在上單調(diào)遞增,
所以
因此
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分14分)圍建一個(gè)面積為的矩形場(chǎng)地,要求矩形場(chǎng)地的一面利用舊墻(利用的舊墻需維修,可供利用的舊墻足夠長(zhǎng)),其他三面圍墻要新建,在舊墻對(duì)面的新墻上要留一個(gè)寬的進(jìn)出口,如圖2所示.已知舊墻的維修費(fèi)用為,新墻的造價(jià)為.設(shè)利用舊墻的長(zhǎng)度為(單位:),修建此矩形場(chǎng)地圍墻的總費(fèi)用為(單位:元).
(1)將表示為的函數(shù),并寫出此函數(shù)的定義域;
(2)若要求用于維修舊墻的費(fèi)用不得超過修建此矩形場(chǎng)地圍墻的總費(fèi)用的15%,試確定,使修建此矩形場(chǎng)地圍墻的總費(fèi)用最小,并求出最小總費(fèi)用.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知為正整數(shù),
(1)證明:當(dāng)時(shí),;
(2)對(duì)于,已知,求證:,;
(3)求出滿足等式的所有正整數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求證:直線是曲線的切線;
(Ⅲ)寫出的一個(gè)值,使得函數(shù)有三個(gè)不同零點(diǎn)(只需直接寫出數(shù)值)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),其中
(1)當(dāng)時(shí),求函數(shù)在上的值域;
(2)若函數(shù)在上的最小值為3,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】行了一次水平測(cè)試。用系統(tǒng)抽樣的方法抽取了50名學(xué)生的數(shù)學(xué)成績(jī),準(zhǔn)備進(jìn)行分析和研究。經(jīng)統(tǒng)計(jì)成績(jī)的分組及各組的頻數(shù)如下:,2;,3;,10;,15;,12;,8.
(Ⅰ)頻率分布表
分組 | 頻數(shù) | 頻率 |
2 | ||
3 | ||
10 | ||
15 | ||
12 | ||
8 | ||
合計(jì) | 50 |
頻率分布直方圖為
(Ⅰ)完成樣本的頻率分布表;畫出頻率分直方圖;
(Ⅱ)估計(jì)成績(jī)?cè)?/span>85分以下的學(xué)生比例;
(Ⅲ)請(qǐng)你根據(jù)以上信息去估計(jì)樣本的眾數(shù)、中位數(shù)、平均數(shù).(精確到0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的左、右焦點(diǎn)分別為,其離心率,焦距為4.
(Ⅰ)求橢圓的方程;
(Ⅱ)若是橢圓上不重合的四個(gè)點(diǎn),且滿足∥,∥,,求的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com