4.對于任意實數(shù)x1,x2,max{x1,x2}表示x1,x2中較大的那個數(shù),則當(dāng)x∈R時,函數(shù)f(x)=max{2-x2,x},x∈[-3,$\frac{1}{2}$]的最大值與最小值的差是5.

分析 根據(jù)新定義,已知x∈[-3,$\frac{1}{2}$],分別求出函數(shù)2-x2和x的最值,可得f(x)的最大值與最小值,進(jìn)而得到之差.

解答 解:∵實數(shù)x1,x2,max{x1,x2}表示x1,x2中較大的那個數(shù),
∵x∈[-3,$\frac{1}{2}$],
∴對于2-x2,當(dāng)x=0時有最大值為2,當(dāng)x=-3時有最小值為-7,
對于x,當(dāng)x=$\frac{1}{2}$時有最大值為$\frac{1}{2}$,當(dāng)x=-3時有最小值為-3,
∴f(x)=max{2-x2,x}的最大值為2,最小值為-3,
則最大值與最小值的差是5,
故答案為:5.

點評 本題是一道新定義題,考查了函數(shù)的最值及其幾何意義,注意運用二次函數(shù)的圖象和性質(zhì),以及一次函數(shù)的單調(diào)性,是道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在平面直角坐標(biāo)系xOy中,以O(shè)為極點,x軸非負(fù)半軸為極軸建立極坐標(biāo)系,取相同的長度單位,已知曲線C的極坐標(biāo)方程為ρ=2$\sqrt{5}$sinθ,直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=3-\frac{\sqrt{2}}{2}t}\\{y=\sqrt{5}+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)).
(Ⅰ)寫出曲線C的直角坐標(biāo)方程和直線l的普通方程.
(Ⅱ)若P(3,$\sqrt{5}$),直線l與曲線C相交于M,N兩點,求|PM|+|PN|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=|2x-1|,g(x)=x2-(2+3k)x+2k+1.若方程g[f(x)]=0有3個不同實根,則k的取值范圍為$k=-\frac{1}{2}$或k>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.以平面直角坐標(biāo)系的原點為極點,x軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,已知曲線C1的參數(shù)方程為$\left\{{\begin{array}{l}{x=cosα}\\{y=sinα}\end{array}}\right.$(α為參數(shù),且α∈[π,2π]),曲線C2的極坐標(biāo)方程為ρ=2sinθ.
(1)求C1的極坐標(biāo)方程與C2的直角坐標(biāo)方程;
(2)若P是C1上任意一點,過點P的直線l交C2于M,N兩點,求|PM|•|PN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,延長BC到E,已知∠BCD:∠ECD=3:2,那么∠BOD等于(  )
A.120°B.136°C.144°D.150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{1}{3}x+1,x≤1}\\{lnx,x>1}\end{array}\right.$且方程f(x)=ax恰有兩個不同的實根,則實數(shù)a的取值范圍是[$\frac{1}{3}$,$\frac{1}{e}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知直線l經(jīng)過點P(-2,6),傾斜角α=$\frac{π}{4}$,圓C的極坐標(biāo)方程是ρ=2cosθ.
(Ⅰ)寫出直線l的參數(shù)方程,并把圓C的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)設(shè)圓C上的點A到直線l的距離最小,點B到直線l的距離最大,求點A,B的橫坐標(biāo)之積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.若0<b≤a,證明$\frac{a-b}{a}$≤ln$\frac{a}$≤$\frac{a-b}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=x3-3ax+$\frac{1}{4}$,若函數(shù)y=f(x)的極小值為0,則a的值為( 。
A.$\frac{1}{4}$B.-$\frac{1}{2}$C.$\frac{3}{4}$D.-$\frac{3}{4}$

查看答案和解析>>

同步練習(xí)冊答案