已知
=(-1,2),
=(5,8),
=(2,3),求
•(
•
).
考點:平面向量數(shù)量積的運算
專題:平面向量及應(yīng)用
分析:直接利用向量的數(shù)量積求解即可.
解答:
解:
=(-1,2),
=(5,8),
=(2,3),
•
=2×5+3×8=34.
∴
•(
•
)=34(-1,2)=(-34,68).
點評:本題考查平面向量的數(shù)量積的計算,基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知命題p:“若方程
+
=1表示雙曲線”;命題q:“關(guān)于x的方程x
2+4x+m=0有實數(shù)根”.若“p或q”為真命題,“p且q”為假命題,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
若復(fù)數(shù)a=3+2i,b=4+mi,要使復(fù)數(shù)
為純虛數(shù),則實數(shù)m的值為( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知二次函數(shù)f(x)=ax
2+bx+1開口向上,g(x)=log
f(x).
(1)令b=-3,若g(x)在x∈[1,2]上單凋遞減,求a的取值范圍;
(2)若f(x+2)為偶函數(shù),定義區(qū)間[m,n]的長度為n-m,問是否存在常數(shù)a,使得函數(shù)y=f(x)在區(qū)間[a,3]且a≥1的值域為D,且D的長度為10-a
2?若存在,求出a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
求函數(shù)y=2sin(2x+
)+1的增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)集合p={x|2x
2-5x-12≤0},Q={x|(x-2a)(a-x)>0},若P∩Q=∅,則實數(shù)a的取值范圍
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=
.
(1)求證:函數(shù)f(x)的圖象的對稱中心是(
,
);
(2)求f(
)+f(
)+…+f(
)的值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
知圓C方程:x2+y2-8x+15=0,直線l方程:y=kx-2
①若l與圓相切,求K的值;
②若l上至少存在一點,使得以該點為圓心,1為半徑的圓與圓C有公共點,求K的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
如圖,半圓的直徑AB=6,C是半圓上的一點,D、E分別是AB、BC上的點,且AD=1,BE=4,DE=3.
(1)求證:
∥
;
(2)求|
|.
查看答案和解析>>