【題目】已知橢圓C經(jīng)過點A(2,3)、B(4,0),對稱軸為坐標軸,焦點F1、F2在x軸上.
(1)求橢圓C的方程;
(2)求∠F1AF2的角平分線所在的直線l與橢圓C的另一個交點的坐標.
【答案】
(1)解:∵橢圓C經(jīng)過點A(2,3)、B(4,0),對稱軸為坐標軸,焦點F1、F2在x軸上,
∴設(shè)橢圓C的方程為 =1,a>b>0,
則 ,解得a2=16,b2=12,
∴橢圓C的方程為 .
(2)解:∵橢圓C的方程為 ,
∴F1(﹣2,0),F(xiàn)2(2,0),則直線AF1的方程為y= ,即3x﹣4y+6=0,
直線AF2的方程為x=2,由點A在橢圓C上的位置得直線l的斜率為正數(shù),
設(shè)P(x,y)為直線l上一點,則 =|x﹣2|,
解得2x﹣y﹣1=0或x+2y﹣8=0(斜率為負,舍),
∴直線l的方程為2x﹣y﹣x=0,
由 ,整理,得19x2﹣16x﹣44=0,
設(shè)直線l與橢圓C的另一個交點為M(x0,y0),
則有 ,解得 , ,
∴直線l與橢圓C的另一個交點坐標為(﹣ ,﹣ ).
【解析】(1)設(shè)橢圓C的方程為 =1,a>b>0,利用待定系數(shù)法能求出橢圓C的方程.(2)直線AF1的方程為3x﹣4y+6=0,求出直線l的方程為2x﹣y﹣x=0,與橢圓聯(lián)立,得19x2﹣16x﹣44=0,由此利用韋達定理能求出直線l與橢圓C的另一個交點坐標.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= ,設(shè)a∈R,若關(guān)于x的不等式f(x)≥| +a|在R上恒成立,則a的取值范圍是( 。
A.[﹣2,2]
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合M={x| <0},N={x|x≤﹣1},則集合{x|x≥3}等于( )
A.M∩N
B.M∪N
C.R(M∩N)
D.R(M∪N)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在8件獲獎作品中,有3件一等獎,有5件二等獎,從這8件作品中任取3件.
(1)求取出的3件作品中,一等獎多于二等獎的概率;
(2)設(shè)X為取出的3件作品中一等獎的件數(shù),求隨機變量X的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在四面體ABCD中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,則四面體ABCD的外界球的半徑為( )
A.
B.2
C.3
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知一個口袋中裝有n個紅球(n≥1且n∈N+)和2個白球,從中有放回地連續(xù)摸三次,每次摸出2個球,若2個球顏色不同則為中獎,否則不中獎.
(1)當n=3時,設(shè)三次摸球中中獎的次數(shù)為X,求隨機變量X的分布列;
(2)記三次摸球中恰有兩次中獎的概率為P,求當n取多少時,P的值最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù)),在以原點為極點, 軸正半軸為極軸的極坐標系中,直線的極坐標方程為.
(1)求曲線的普通方程和直線的傾斜角;
(2)設(shè)點,直線和曲線交于兩點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=f(x﹣1)的圖象關(guān)于直線x=1對稱,且當x∈(﹣∞,0)時,f(x)+xf′(x)<0成立若a=(20.2)f(20.2),b=(1n2)f(1n2),c=( )f( ),則a,b,c的大小關(guān)系是( )
A.a>b>c
B.b>a>c
C.c>a>b
D.a>c>b
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com