【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC= ,E,F(xiàn)分別是BC,A1C的中點.
(1)求異面直線EF,AD所成角的余弦值;
(2)點M在線段A1D上, =λ.若CM∥平面AEF,求實數(shù)λ的值.
【答案】
(1)解:因為四棱柱ABCD﹣A1B1C1D1為直四棱柱,
所以A1A⊥平面ABCD.
又AE平面ABCD,AD平面ABCD,
所以A1A⊥AE,A1A⊥AD.
在菱形ABCD中∠ABC= ,則△ABC是等邊三角形.
因為E是BC中點,所以BC⊥AE.
因為BC∥AD,所以AE⊥AD.
建立空間直角坐標(biāo)系.則A(0,0,0),C( ,1,0),D(0,2,0),
A1(0,0,2),E( ,0,0),F(xiàn)( , ,1).
=(0,2,0), =(﹣ , ,1),
所以異面直線EF,AD所成角的余弦值為 =
(2)解:設(shè)M(x,y,z),由于點M在線段A1D上,且 =λ,
則(x,y,z﹣2)=λ(0,2,﹣2).
則M(0,2λ,2﹣2λ), =(﹣ ,2λ﹣1,2﹣2λ).
設(shè)平面AEF的法向量為 =(x0,y0,z0).
因為 =( ,0,0), =( , ,1),
由 ,得x0=0, y0+z0=0.
取y0=2,則z0=﹣1,
則平面AEF的一個法向量為n=(0,2,﹣1)
由于CM∥平面AEF,則
【解析】(1)建立坐標(biāo)系,求出直線的向量坐標(biāo),利用夾角公式求異面直線EF,AD所成角的余弦值;(2)點M在線段A1D上, =λ.求出平面AEF的法向量,利用CM∥平面AEF,即可求實數(shù)λ的值.
【考點精析】掌握異面直線及其所成的角和直線與平面平行的性質(zhì)是解答本題的根本,需要知道異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系;一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行;簡記為:線面平行則線線平行.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,已知直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為,直線與曲線交于兩點.
(1)求直線l的普通方程和曲線的直角坐標(biāo)方程;
(2)已知點的極坐標(biāo)為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求證:CD⊥AP;
(2)若CD⊥PD,求證:CD∥平面PAB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)如圖,在四棱錐P—ABCD中,已知PA⊥平面ABCD,且四邊形ABCD為直角梯形,∠ABC=∠BAD=,PA=AD=2,AB=BC=1.
(1)求點D到平面PBC的距離;
(2)設(shè)Q是線段BP上的動點,當(dāng)直線CQ與DP所成的角最小時,求二面角B-CQ-D的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在多面體中,四邊形為等腰梯形,,已知,,,四邊形為直角梯形,,.
(1)證明:平面平面;
(2)求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,邊a、b、c分別是角A、B、C的對邊,且滿足bcosC=(3a-c)cosB
(1)求cosB
(2)若△ABC的面積為4,b=4,求△ABC的周長
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,將邊長為1的正方形沿對角線折起,使得平面平面,在折起后形成的三棱錐中,給出下列四種說法:
①是等邊三角形;②;③;④直線和所成的角的大小為.其中所有正確的序號是( )
A. ①③B. ②④C. ①②③D. ①②④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】假定某射手射擊一次命中目標(biāo)的概率為.現(xiàn)有4發(fā)子彈,該射手一旦射中目標(biāo),就停止射擊,否則就一直獨立地射擊到子彈用完.設(shè)耗用子彈數(shù)為X,求:
(1)X的概率分布;
(2)數(shù)學(xué)期望E(X).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市電視臺為了宣傳舉辦問答活動,隨機對該市15~65歲的人群抽樣了人,回答問題計結(jié)果如下圖表所示:
(1)分別求出的值;
(2)從第2,3,4組回答正確的人中用分層抽樣的方法抽取6人,則第2,3,4組每組各抽取多少人?
(3)在(2)的前提下,電視臺決定在所抽取的6人中隨機抽取2人頒發(fā)幸運獎,求所抽取的人中第2組至少有1人獲得幸運獎的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com