【題目】如圖,四棱錐P﹣ABCD中,AD⊥平面PAB,AP⊥AB.
(1)求證:CD⊥AP;
(2)若CD⊥PD,求證:CD∥平面PAB.

【答案】
(1)證明:因?yàn)锳D⊥平面PAB,AP平面PAB,所以AD⊥AP.

又因?yàn)锳P⊥AB,AB∩AD=A,AB平面ABCD,AD平面ABCD,

所以AP⊥平面ABCD.

因?yàn)镃D平面ABCD,所以CD⊥AP


(2)證明:因?yàn)镃D⊥AP,CD⊥PD,且PD∩AP=P,PD平面PAD,AP平面PAD,

所以CD⊥平面PAD.①

因?yàn)锳D⊥平面PAB,AB平面PAB,所以AB⊥AD.

又因?yàn)锳P⊥AB,AP∩AD=A,AP平面PAD,AD平面PAD,

所以AB⊥平面PAD.②

由①②得CD∥AB,

因?yàn)镃D平面PAB,AB平面PAB,所以CD∥平面PAB


【解析】(1)推導(dǎo)出AD⊥AP,AP⊥AB,從而AP⊥平面ABCD,由此能證明CD⊥AP.(2)由CD⊥AP,CD⊥PD,得CD⊥平面PAD.再推導(dǎo)出AB⊥AD,AP⊥AB,從而AB⊥平面PAD,進(jìn)而CD∥AB,由此能證明CD∥平面PAB.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解直線與平面平行的判定的相關(guān)知識(shí),掌握平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行;簡(jiǎn)記為:線線平行,則線面平行.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)銷(xiāo)商經(jīng)銷(xiāo)某種農(nóng)產(chǎn)品,在一個(gè)銷(xiāo)售季度內(nèi),每售出1t該產(chǎn)品獲利潤(rùn)500元,未售出的產(chǎn)品,每1t虧損300元.根據(jù)歷史資料,得到銷(xiāo)售季度內(nèi)市場(chǎng)需求量的頻率分布直方圖,如圖所示.經(jīng)銷(xiāo)商為下一個(gè)銷(xiāo)售季度購(gòu)進(jìn)了130t該農(nóng)產(chǎn)品.以x(單位:t,100≤x≤150)表示下一個(gè)銷(xiāo)售季度內(nèi)的市場(chǎng)需求量,T(單位:元)表示下一個(gè)銷(xiāo)售季度內(nèi)經(jīng)銷(xiāo)該農(nóng)產(chǎn)品的利潤(rùn).

(1)將T表示為x的函數(shù);
(2)根據(jù)直方圖估計(jì)利潤(rùn)T不少于57000元的概率;
(3)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個(gè)值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中點(diǎn)值的概率(例如:若x∈[100,110))則取x=105,且x=105的概率等于需求量落入[100,110)的頻率,求T的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=cosxsin2x,下列結(jié)論中錯(cuò)誤的是(
A.y=f(x)的圖象關(guān)于(π,0)中心對(duì)稱
B.y=f(x)的圖象關(guān)于x= 對(duì)稱
C.f(x)的最大值為
D.f(x)既是奇函數(shù),又是周期函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnx+(e﹣a)x﹣b,其中e為自然對(duì)數(shù)的底數(shù).若不等式f(x)≤0恒成立,則 的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校為了解開(kāi)展校園安全教育系列活動(dòng)的成效,對(duì)全校學(xué)生進(jìn)行了一次安全意識(shí)測(cè)試,根據(jù)測(cè)試成績(jī)?cè)u(píng)定“合格”“不合格”兩個(gè)等級(jí)同時(shí)對(duì)相應(yīng)等級(jí)進(jìn)行量化:“合格”記5,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計(jì)結(jié)果及對(duì)應(yīng)的頻率分布直方圖如圖所示:

等級(jí)

不合格

合格

得分

[20,40)

[40,60)

[60,80)

[80,100]

頻數(shù)

6

a

24

b

(1)a,b,c的值;

(2)先用分層抽樣的方法從評(píng)定等級(jí)為“合格”和“不合格”的學(xué)生中隨機(jī)抽取10人進(jìn)行座談,再?gòu)倪@10人中任選4,記所選4人的量化總分為ξ,ξ的分布列及數(shù)學(xué)期望E(ξ);

(3)某評(píng)估機(jī)構(gòu)以指標(biāo)其中表示的方差)來(lái)評(píng)估該校開(kāi)展安全教育活動(dòng)的成效.若0.7,則認(rèn)定教育活動(dòng)是有效的;否則認(rèn)定教育活動(dòng)無(wú)效,應(yīng)調(diào)整安全教育方案.在(2)的條件下,判斷該校是否應(yīng)調(diào)整安全教育方案.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)D是含數(shù)1的有限實(shí)數(shù)集,f(x)是定義在D上的函數(shù)。若f(x)的圖像繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)后與原圖像重合,則在以下各項(xiàng)中,f(1)的取值只可能是( )

A. B. C. D. 0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f (x)=ex﹣ax﹣1,其中e為自然對(duì)數(shù)的底數(shù),a∈R.
(1)若a=e,函數(shù)g (x)=(2﹣e)x. ①求函數(shù)h(x)=f (x)﹣g (x)的單調(diào)區(qū)間;
②若函數(shù)F(x)= 的值域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)若存在實(shí)數(shù)x1 , x2∈[0,2],使得f(x1)=f(x2),且|x1﹣x2|≥1,求證:e﹣1≤a≤e2﹣e.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在直四棱柱ABCD﹣A1B1C1D1中,底面四邊形ABCD為菱形,A1A=AB=2,∠ABC= ,E,F(xiàn)分別是BC,A1C的中點(diǎn).
(1)求異面直線EF,AD所成角的余弦值;
(2)點(diǎn)M在線段A1D上, =λ.若CM∥平面AEF,求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】平頂山市公安局交警支隊(duì)依據(jù)《中華人民共和國(guó)道路交通安全法》第條規(guī)定:所有主干道路凡機(jī)動(dòng)車(chē)途經(jīng)十字口或斑馬線,無(wú)論轉(zhuǎn)彎或者直行,遇有行人過(guò)馬路,必須禮讓行人,違反者將被處以元罰款,記分的行政處罰.如表是本市一主干路段監(jiān)控設(shè)備所抓拍的個(gè)月內(nèi),機(jī)動(dòng)車(chē)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):

月份

違章駕駛員人數(shù)

(Ⅰ)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)與月份之間的回歸直線方程;

(Ⅱ)預(yù)測(cè)該路段月份的不“禮讓斑馬線”違章駕駛員人數(shù).

參考公式:,

查看答案和解析>>

同步練習(xí)冊(cè)答案