已知函數(shù)f(x)=lg
1-x
1+x

(1)判斷函數(shù)f(x)的奇偶性;  
(2)判斷f(x)的單調(diào)性.
考點(diǎn):對(duì)數(shù)函數(shù)的圖像與性質(zhì),函數(shù)單調(diào)性的判斷與證明,函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)可得定義域?yàn)椋?1,1),由對(duì)數(shù)的運(yùn)算可得f(-x)=-f(x),可得結(jié)論;  
(2)任取-1<x1<x2<1,作出由對(duì)數(shù)的運(yùn)算可得f(x1)-f(x2)>lg1=0,可得單調(diào)性.
解答: 解:(1)由題意可得
1-x
1+x
>0,解得-1<x<1,
∴函數(shù)f(x)=lg
1-x
1+x
的定義域?yàn)椋?1,1),
又∵f(-x)+f(x)=lg
1+x
1-x
+lg
1-x
1+x
=lg1=0,
∴f(-x)=-f(x)
∴函數(shù)f(x)奇函數(shù);  
(2)任取-1<x1<x2<1,
∴f(x1)-f(x2)=lg
1+x1
1-x1
-lg
1+x2
1-x2

=lg
1+x1
1-x1
1-x2
1+x2
>lg1=0
∴f(x)在(-1,1)單調(diào)遞減.
點(diǎn)評(píng):本題考查對(duì)數(shù)函數(shù)的單調(diào)性和奇偶性,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知實(shí)數(shù)x,y滿足
x+1-y≥0
x+y-4≤0
y≥m
,若目標(biāo)函數(shù)z=2x+y的最大值與最小值的差為2,則實(shí)數(shù)m的值為(  )
A、4
B、3
C、2
D、-
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
e1
=(-1,2),
e2
=(5,-2),向量
a
=(4,0),用
e1
、
e2
表示向量
a
,則
a
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知t∈R,i為虛數(shù)單位,復(fù)數(shù)z1=3+4i,z2=t+i,且z1•z2是實(shí)數(shù),則t等于(  )
A、
3
4
B、
4
3
C、-
4
3
D、-
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={x|-1<x<3},B={x|x<1},則A∩B=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知Rt△ABC中,∠B=90°,若
AB
AC
=3,
CA
CB
=1,則|
AC
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)為二次函數(shù),且f(x+1)+f(x-1)=2x2-4x;
(1)求f(x);
(2)當(dāng)x∈[-1,2]時(shí),求f(2x)的最大值與最小值.
(3)若f(x)-1≤a在x∈[0,3]上恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知∠Q的頂點(diǎn)與原點(diǎn)重合,始邊與x軸的正半軸重合,終邊在直線y=2x上,則cosQ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四邊形ABCD為菱形,ACFE為平行四邊形,且平面ACFE⊥平面ABCD,設(shè)BD與AC相交于點(diǎn)G,H為FG的中點(diǎn).
(1)證明:BD⊥CH;
(2)若AB=BD=2,AE=
3
,CH=
3
2
,求三棱錐F-BDC的體積.

查看答案和解析>>

同步練習(xí)冊答案