已知橢圓的長(zhǎng)軸長(zhǎng)為,焦點(diǎn)是,點(diǎn)到直線的距離為,過(guò)點(diǎn)且傾斜角為銳角的直線與橢圓交于A、B兩點(diǎn),使得.

(1)求橢圓的標(biāo)準(zhǔn)方程;           (2)求直線l的方程.

【解析】(1)中利用點(diǎn)F1到直線x=-的距離為可知-.得到a2=4而c=,∴b2=a2-c2=1.

得到橢圓的方程。(2)中,利用,設(shè)出點(diǎn)A(x1,y1)、B(x2,y2).,借助于向量公式再利用 A、B在橢圓+y2=1上, 得到坐標(biāo)的值,然后求解得到直線方程。

解:(1)∵F1到直線x=-的距離為,∴-.

∴a2=4而c=,∴b2=a2-c2=1.

∵橢圓的焦點(diǎn)在x軸上,∴所求橢圓的方程為+y2=1.……4分

(2)設(shè)A(x1,y1)、B(x2,y2).由第(1)問(wèn)知

,

……6分

∵A、B在橢圓+y2=1上,

……10分

∴l(xiāng)的斜率為.

∴l(xiāng)的方程為y=(x-),即x-y-=0.

 

【答案】

(1) +y2=1.(2) x-y-=0.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知以F1(-2,0),F(xiàn)2(2,0)為焦點(diǎn)的橢圓與直線x+
3
y+4=0有且僅有一個(gè)交點(diǎn),則橢圓的長(zhǎng)軸長(zhǎng)為( 。
A、3
2
B、2
6
C、2
7
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的長(zhǎng)軸長(zhǎng)為2a,焦點(diǎn)是F1(-
3
,0),F2(
3
,0)
,點(diǎn)F1到直線x=-
a2
3
的距離為
3
3
,過(guò)點(diǎn)F2且傾斜角為銳角的直線l與橢圓交于A,B兩點(diǎn),使得
BF2
=3
F2A

(1)求橢圓的方程;
(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)下列條件求橢圓或雙曲線的標(biāo)準(zhǔn)方程.
(Ⅰ)已知橢圓的長(zhǎng)軸長(zhǎng)為6,一個(gè)焦點(diǎn)為(2,0),求該橢圓的標(biāo)準(zhǔn)方程.
(Ⅱ)已知雙曲線過(guò)點(diǎn)P(
5
1
2
)
,漸近線方程為x±2y=0,且焦點(diǎn)在x軸上,求該雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(選修4-4:坐標(biāo)系與參數(shù)方程)
已知橢圓的長(zhǎng)軸長(zhǎng)為6,焦距F1F2=4
2
,過(guò)橢圓左焦點(diǎn)F1作一直線,交橢圓于兩點(diǎn)M、N,設(shè)∠F2F1M=α(0≤α<π),當(dāng)α為何值時(shí),MN與橢圓短軸長(zhǎng)相等?(用極坐標(biāo)或參數(shù)方程方程求解)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:黑龍江省大慶鐵人中學(xué)2012屆高三上學(xué)期期末考試數(shù)學(xué)理科試題 題型:044

已知橢圓的長(zhǎng)軸長(zhǎng)為4,且點(diǎn)在橢圓上.

(Ⅰ)求橢圓的方程;

(Ⅱ)過(guò)橢圓右焦點(diǎn)的直線l交橢圓于A,B兩點(diǎn),若以AB為直徑的圓過(guò)原點(diǎn),求直線l方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案