10.△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若a=3,b=5,c=7,則角C的大小為$\frac{2π}{3}$.

分析 由已知利用余弦定理可求cosC的值,結(jié)合C的范圍,由特殊角的三角函數(shù)值即可得解.

解答 解:∵a=3,b=5,c=7,
∴cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{{3}^{2}+{5}^{2}-{7}^{2}}{2×3×5}$=-$\frac{1}{2}$,
∵C∈(0,π),
∴C=$\frac{2π}{3}$.
故答案為:$\frac{2π}{3}$.

點(diǎn)評(píng) 本題主要考查了余弦定理,特殊角的三角函數(shù)值在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=x3+ax2+bx在x=-$\frac{2}{3}$與x=1處都取得極值.
(1)求a,b的值;
(2)求曲線y=f(x)在x=2處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知實(shí)數(shù)a>0,b>0,若$\sqrt{2}$是4a與2b的等比中項(xiàng),則下列不對(duì)的說法是( 。
A.$0<a<\frac{1}{2}$B.0<b<1C.$\frac{1}{2}<a+b<1$D.$\frac{3}{2}<3a+b<2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.?dāng)?shù)列{an}滿足:a1=1,an+1+(-1)nan=2n-1.
(1)求a2,a4,a6;
(2)設(shè)bn=a2n,求數(shù)列{bn}的通項(xiàng)公式;
(3)設(shè)Sn為數(shù)列{an}的前n項(xiàng)和,求S2018

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.點(diǎn)P(1,2)到直線x-2y+5=0的距離為(  )
A.$\frac{1}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{2\sqrt{5}}{5}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知△ABC的三內(nèi)角A、B、C的對(duì)邊分別為a,b,c,且csinA=$\sqrt{3}$acosC.
(1)求角C的大;
(2)若c=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.下列4個(gè)命題:
①“若a、G、b成等比數(shù)列,則G2=ab”的逆命題;
②“如果x2+x-6≥0,則x>2”的否命題;
③在△ABC中,“若A>B”則“sinA>sinB”的逆否命題;
④當(dāng)0≤α≤π時(shí),若8x2-(8sinα)x+cos2α≥0對(duì)?x∈R恒成立,則α的取值范圍是0≤α≤$\frac{π}{6}$.
其中真命題的序號(hào)是②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知{an}是等差數(shù)列,Sn為其前n項(xiàng)和,若a6=5,S4=12a4,則公差d的值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.在極坐標(biāo)系中,曲線ρ=4sin(θ-$\frac{π}{4}$)(ρ∈R)關(guān)于( 。
A.直線θ=$\frac{π}{3}$成軸對(duì)稱B.直線θ=$\frac{3π}{4}$成軸對(duì)稱
C.點(diǎn)(2,$\frac{π}{3}$)成中心對(duì)稱D.極點(diǎn)成中心對(duì)稱

查看答案和解析>>

同步練習(xí)冊答案