18.如圖,已知復(fù)平面內(nèi)平行四邊形ABCD中,點(diǎn)A對應(yīng)的復(fù)數(shù)為-1,$\overrightarrow{AB}$對應(yīng)的復(fù)數(shù)為2+2i,$\overrightarrow{BC}$對應(yīng)的復(fù)數(shù)為4-4i.
(Ⅰ)求D點(diǎn)對應(yīng)的復(fù)數(shù);
(Ⅱ)求平行四邊形ABCD的面積.

分析 (I)利用復(fù)數(shù)的幾何意義、向量的坐標(biāo)運(yùn)算性質(zhì)、平行四邊形的性質(zhì)即可得出.
(II)利用向量垂直與數(shù)量積的關(guān)系、模的計(jì)算公式、矩形的面積計(jì)算公式即可得出.

解答 解:(Ⅰ)依題點(diǎn)A對應(yīng)的復(fù)數(shù)為-1,$\overrightarrow{AB}$對應(yīng)的復(fù)數(shù)為2+2i,
得A(-1,0),$\overrightarrow{AB}$=(2,2),可得B(1,2).
  又$\overrightarrow{BC}$對應(yīng)的復(fù)數(shù)為4-4i,得$\overrightarrow{BC}$=(4,-4),可得C(5,-2).
設(shè)D點(diǎn)對應(yīng)的復(fù)數(shù)為x+yi,x,y∈R.
得$\overrightarrow{CD}$=(x-5,y+2),$\overrightarrow{BA}$=(-2,-2).
∵ABCD 為平行四邊形,∴$\overrightarrow{BA}$=$\overrightarrow{CD}$,解得x=3,y=-4,
故D點(diǎn)對應(yīng)的復(fù)數(shù)為3-4i.
(Ⅱ)$\overrightarrow{AB}$=(2,2),$\overrightarrow{BC}$=(4,-4),
可得:$\overrightarrow{AB}•\overrightarrow{BC}$=0,∴$\overrightarrow{AB}$$⊥\overrightarrow{BC}$.
又|$\overrightarrow{AB}$|=2$\sqrt{2}$,$|\overrightarrow{BC}|$=4$\sqrt{2}$.
故平行四邊形ABCD的面積=$2\sqrt{2}×4\sqrt{2}$=16.

點(diǎn)評 本題考查了復(fù)數(shù)的幾何意義、向量的坐標(biāo)運(yùn)算性質(zhì)、平行四邊形的性質(zhì)、向量垂直與數(shù)量積的關(guān)系、模的計(jì)算公式、矩形的面積計(jì)算公式,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某幾何體的三視圖如圖所示,則該幾何體的體積為(  )
A.64B.64-4πC.64-8πD.64-$\frac{4π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.袋子A和B中裝有若干個均勻的紅球和白球,從A中摸出一個紅球的概率是$\frac{1}{3}$,從B中摸出一個紅球的概率為p.
(1)從A中又放回的摸球,每次摸出一個,共摸5次
①恰好有3次摸到紅球的概率;②第一次、第三次、第五次摸到紅球的概率.
(2)若A、B兩個袋子中的球之比為12,將A、B中的球裝在一起后,從中摸出一個紅球的概率是$\frac{2}{5}$,求p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)=(x3+2x2+ax-a)ex,f′(x)為f(x)的導(dǎo)函數(shù),則f′(0)的值為( 。
A.0B.1C.-aD.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.給出下列不等式:①x≥ln(x+1)(x>-1)②$\sqrt{x}$>-$\frac{{x}^{2}}{2}$+2x-$\frac{1}{2}$(x>0)③ln$\frac{1+x}{1-x}$>2(x+$\frac{{x}^{3}}{3}$)(x∈(0,1))其中成立的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知;$f(n)=\frac{1}{n+1}+\frac{1}{n+2}+…+\frac{1}{2n}$,則f(n+1)-f(n)=( 。
A.$\frac{1}{2n+1}+\frac{1}{2n+2}$B.$\frac{1}{2n+2}-\frac{1}{n+1}$
C.$\frac{1}{2n+2}$D.$\frac{1}{2n+1}+\frac{1}{2n+2}-\frac{1}{n+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.某小學(xué)為了解本校某年級女生的身高情況,從本校該年級的學(xué)生中隨機(jī)選出100名女生并統(tǒng)計(jì)她們的身高(單位:cm),得到如圖頻率分布表:
分組(身高)[125,130)[130,135)[135,140)[140,145]
(Ⅰ)用分層抽樣的方法從身高在[125,130)和[140,145]的女生中共抽取6人,則身高在[125,130)的女生應(yīng)抽取幾人?
(Ⅱ)在(Ⅰ)中抽取的6人中,再隨機(jī)抽取2人,求這2人身高都在[125,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.不等式$\frac{3x+1}{2x-1}<2$的解集是{x|x>3或x<$\frac{1}{2}$}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1以及橢圓內(nèi)一點(diǎn)P(2,1),則以P為中點(diǎn)的弦所在直線斜率為( 。
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.2D.-2

查看答案和解析>>

同步練習(xí)冊答案