已知拋物線C:y2=2px(p>0),M點(diǎn)的坐標(biāo)為(12,8),N點(diǎn)在拋物線C上,且滿足
ON
=
3
4
OM
,O為坐標(biāo)原點(diǎn).則拋物線C的方程______.
∵M(jìn)點(diǎn)的坐標(biāo)為(12,8),N點(diǎn)在拋物線C上,且滿足
ON
=
3
4
OM
,
∴M(9,6),
代入拋物線方程可得36=18p,
∴p=2,
∴拋物線C的方程是y2=4x.
故答案為:y2=4x.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知點(diǎn)p是拋物線x=
1
4
y2
上一個(gè)動(dòng)點(diǎn),則點(diǎn)p到點(diǎn)A(0,-1)的距離與點(diǎn)p到直線x=-1的距離和的最小值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=ax2的準(zhǔn)線方程為y=-1,則實(shí)數(shù)a=( 。
A.4B.
1
4
C.2D.
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點(diǎn)A的坐標(biāo)為(3,2),F(xiàn)為拋物線y2=2x的焦點(diǎn),點(diǎn)P是拋物線上的一動(dòng)點(diǎn),則|PA|+|PF|取得最小值時(shí)點(diǎn)P的坐標(biāo)是( 。
A.(0,0)B.(1,1)C.(2,2)D.(
1
2
,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線y=2px2(p≠0)的焦點(diǎn)坐標(biāo)為(  )
A.(0,p)B.(0,
1
4p
C.(0,
1
8p
D.(0,±
1
8p

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在平面直角坐標(biāo)系中,已知三點(diǎn)A(m,n),B(n,t),C(t,m),直線AC的斜率與傾斜角為鈍角的直線AB的斜率之和為
5
3
,而直線AB恰好經(jīng)過拋物線x2=2p(y-q),(p>0)的焦點(diǎn)F并且與拋物線交于P、Q兩點(diǎn)(P在y軸左側(cè)).則|
PF
QF
|=( 。
A.9B.4C.
173
2
D.
21
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y2=4x,點(diǎn)M(1,0)關(guān)于y軸的對(duì)稱點(diǎn)為N,直線l過點(diǎn)M交拋物線于A,B兩點(diǎn).
(Ⅰ)證明:直線NA,NB的斜率互為相反數(shù);
(Ⅱ)求△ANB面積的最小值;
(Ⅲ)當(dāng)點(diǎn)M的坐標(biāo)為(m,0)(m>0,且m≠1).根據(jù)(Ⅰ)(Ⅱ)推測(cè)并回答下列問題(不必說明理由):
①直線NA,NB的斜率是否互為相反數(shù)?
②△ANB面積的最小值是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一個(gè)截面為拋物線形的舊河道(如圖1),河口寬AB=4米,河深2米,現(xiàn)要將其截面改造為等腰梯形(如圖2),要求河道深度不變,而且施工時(shí)只能挖土,不準(zhǔn)向河道填土.
(1)建立恰當(dāng)?shù)闹苯亲鴺?biāo)系并求出拋物線弧AB的標(biāo)準(zhǔn)方程;
(2)試求當(dāng)截面梯形的下底(較長(zhǎng)的底邊)長(zhǎng)為多少米時(shí),才能使挖出的土最少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè),分別是橢圓的左、右焦點(diǎn),過點(diǎn)的直線交橢圓兩點(diǎn),
(1)若的周長(zhǎng)為16,求;
(2)若,求橢圓的離心率.

查看答案和解析>>

同步練習(xí)冊(cè)答案