已知點p是拋物線x=
1
4
y2
上一個動點,則點p到點A(0,-1)的距離與點p到直線x=-1的距離和的最小值是______.
如圖所示,過點P作PM⊥直線x=-1,垂垂足為M.
設(shè)拋物線的焦點為F,則F(1,0),|PF|=|PM|.
∴|PM|+|PA|=|PF|+|PA|,
當且僅當三點P,A,F(xiàn)共線時,|PF|+|PA|取得最小值|AF|=
1+1
=
2

故答案為:
2
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y=4x2的焦點坐標是(  )
A.(1,0)B.(0,1)C.(
1
16
,0
D.(0,
1
16

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若橢圓
x2
6
+
y2
2
=1
的右焦點與拋物線y2=2px的焦點重合,則p的值為( 。
A.2B.-2C.4D.-4

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

過拋物線y2=4x的焦點,方向向量為(1,
3
)
的直線方程是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y2=-12x的準線與雙曲線
x2
9
-
y2
3
=1
的兩條漸近線所圍成的三角形的面積等于( 。
A.3
3
B.2
3
C.2D.
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

曲線C是平面內(nèi)與定點F(2,0)和定直線x=-2的距離的積等于4的點的軌跡.給出下列四個結(jié)論:
①曲線C過坐標原點;
②曲線C關(guān)于x軸對稱;
③曲線C與y軸有3個交點;
④若點M在曲線C上,則|MF|的最小值為2(
2
-1)

其中,所有正確結(jié)論的序號是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設(shè)拋物線C:y2=4x的焦點為F,直線l過F且與C交于A,B兩點.若|AF|=3|BF|,則l的方程為( 。
A.y=x-1或y=-x+1B.y=
3
3
(x-1)或y=-
3
3
(x-1)
C.y=
3
(x-1)或y=-
3
(x-1)
D.y=
2
2
(x-1)或y=-
2
2
(x-1)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下列說法中,正確的有______.
①若點P(x0,y0)是拋物線y2=2px上一點,則該點到拋物線的焦點F的距離是|PF|=x0+
P
2
;
②方程x2+y2-2x+1=0表示的圖形是圓;
③設(shè)定圓O上有一動點A,圓O內(nèi)一定點M,AM的垂直平分線與半徑OA的交點為點P,則P的軌跡為一橢圓;
④某工廠甲、乙、丙三個車間生產(chǎn)了同一種產(chǎn)品,數(shù)量分別為120件,80件,60件.為了解它們的產(chǎn)品質(zhì)量是否存在顯著差異,用分層抽樣方法抽取了一個容量為n的樣本進行調(diào)查,其中從丙車間的產(chǎn)品中抽取了3件,則n=13;
⑤雙曲線
y2
49
-
x2
25
=-1的漸近線方程是y=±
5
7
x.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知拋物線C:y2=2px(p>0),M點的坐標為(12,8),N點在拋物線C上,且滿足
ON
=
3
4
OM
,O為坐標原點.則拋物線C的方程______.

查看答案和解析>>

同步練習冊答案