一空間幾何體的三視圖如圖所示,則該幾何體的體積為            (只寫出一解即可)
由圖可知該幾何體可能是圓錐和圓柱的組合,上部分是底面半徑為1母線長為2的圓錐,下部分是底面半徑為1高為2的圓柱,則圓錐的高為,所以
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是直三棱柱,,點分別是,的中點,若,則所成角的余弦值為            

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在正三棱柱中, 的沿長線上一點,三點的平面交,交 
(Ⅰ)求證:∥平面
(Ⅱ)當(dāng)平面平面時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在正方體ABCDA1B1C1D1中,E、F為棱AD、AB的中點.
(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

正四棱錐的側(cè)棱長為,底面邊長為,中點,則異面直線所成的角是(   )
A.30° B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

在正方體ABCD-A1B1C1D1中,直線A1B與平面ABC1D1所成的角為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)如圖,在長方體ABCD-A1B1C1D1中,AD=AAl=1,AB=2,點E在棱AB上移動.
(I)證明:D1E上AlD;
(Ⅱ)當(dāng)E為AB的中點時,求點E到面ACD1的距離;
(Ⅲ)在(II)的條件下,求D1E與平面AD1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩直線m、n,兩平面α、β,且.下面有四個命題(        )
(1)若;           (2);
(3;           (4)
其中正確命題的個數(shù)是
A.0  B.1C.2    D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在正方體ABCD—A1B1C1D1中,M為DD1的中點,O為底面ABCD的中心,P為棱A1B1上任意一點,則直線OP與直線AM所成的角是       

查看答案和解析>>

同步練習(xí)冊答案